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The paper deals with representation of individual stem profiles of beech and oak in 
White Carpathian Mountains, Czech Republic. Due to complicacy and irregularity of 
stem profiles of most trees common taper functions are not applicable for individual 
stem profile description. Selected spline functions were used to model the irregular 
stem profiles. To fit complicated stem profiles with a spline more input points are 
needed than for regular stems. The splines were computed using four fixed input 
points representing diameters in four conventional heights (base diameter, stump 
diameter, DBH and the height) and another two input points interactively added to 
describe the location of the most significant malformation. More input points were 
added in respect of the malformation position. To evaluate the accuracy of each spline 
a number of stems have been measured. For each stem diameters with interspaces of 
0.2 m have been measured from the base to the top. At each measurement position 
predicted diameters with the real value were compared. Five different statistical 
indicators were used to evaluate the accuracy of the spline models. The profiles were 
the best represented by Catmull-Rom spline with tangent vector length corrections. 
Previously frequently used natural cubic spline is not suitable for irregular stems. 
When interpolating complicated stem profiles it suffers from oscillation considerably 
more than for regular stems of coniferous species.
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Introduction
The form and taper of tree stems has been 

studied for more than a century (e. g. Höjer 1903 
in Kitikidou, Chatzilazarou 2008). By form is 
meant the shape of a stem or the dependence 
of diameter on height, while taper is defined as 
the rate of narrowing in diameter with respect 
to increase in height (Gray, 1956). Using taper 
functions volume of the stem can be precisely 
derived; taper function is also an important 
basis of estimation of sorting of the stem and of 
optimal utilization of the wood mass.

On assumption that stems of forest trees 
conform to the dimensions of predesignated 
geometric solids many simple taper models of 

polynomial (eg. Matte 1949, Bruce 1968 et al., 
Goulding, Murray 1976), logarithmic (Demae-
rschalk 1972), trigonometric (Thomas, Parresol 
1991) or other (Biging 1984) forms have been 
developed for trees of a wide range of species 
and geographical areas. They were intended to 
provide reasonable estimates of upper stem di-
ameters and volume of the stem with little input 
data.

Another approach doubts, that any precon-
ceived general functional form can represent the 
taper properly (Grosenbaugh 1966, Brooks et al. 
2008, Sharma, Parton 2009) because stem taper 
is an unstable factor and individual trees seem 
capable to assume infinite variety of shapes. Liu 
(1980) supposes that more rational approach 
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than fitting the taper to any preconceived func-
tional form is to provide numerical technique 
that is capable of assuming various forms. Such 
approach is represented by segmented models 
(eg. Max, Burkhart 1976, Demaerschalk, Ko-
zak 1977, Jiang et al. 2005), variable-exponent 
models (eg. Flewelling, Raynes 1993, Eerikäinen 
2001, Lee et al. 2003, Li et al. 2012) or spline 
functions. In the last decade, most of the atten-
tion concerning stem profile modeling was paid 
to the variable-exponent models, which unlike 
splines have shape constraints, no risk of oscilla-
tion and due to their parametric form are easily 
applicable and generalizable. On the other hand, 
the splines are considerably more formable and 
can be applied to a single stem in contrast to the 
variable-exponent models, which need a num-
ber of stems for parameter values setoff. 

The term spline is a general tag for a wide 
class of functions defined piecewise by poly-
nomial segments. The cubic spline was many 
times used to describe the stem form (Gould-
ing 1979, Lahtinen and Laasasenaho 1979, Liu 
1980, Smaltschinski 1983, Figueiredo-Filho et 
al. 1996, Laasasenaho et al. 2005), to model bark 
thickness (Laasasenaho et al. 2005) or to predict 
the stem curve from lower stem measurement 
(Nummi and Möttönen 2004, Koskela 2006). 
From other splines Lahtinen (1988) used mo-
notony preserving quadratic spline eliminating 
oscillations. All previous studies concerned 
only coniferous species. Utilizing splines for 
stem profile representation of broadleaved spe-
cies may be more beneficial than for coniferous 
species due to higher complicacy of stem profile 
of broadleaved species compared to coniferous 
species and due to high percentage of stems with 
irregular shape. Irregularities in broadleaved 
stem profiles are represented mainly by sudden 
diameter drop due to bifurcation of the main 
stem or large branching. Moreover such a large 
branching is usually preceded by local enlarge-
ment of the stem diameter, which violates the 
monotony of the stem profile and makes the 
profile even more complicated. Profiles of such 
irregular stems are difficult or even impossible 
to be described by common taper functions 
usually restricted to create a smooth monotone 
curve.

Material and Methods
In this study data from 43 individuals of Eu-

ropean beech (Fagus sylvatica L.) and sessile oak 
(Quercus petraea [Matt.] Liebl.) were used. The 
trees were taken from several stands of differ-
ent age located in protected landscape area Bílé 

Karpaty (White Carpathians), Czech Republic. 
DBH of the trees varied between 168 mm and 
635 mm; heights ranged from 14.6 m to 33.4 m. 
Diameters outside bark were measured on the 
felled trees with interspaces 0.1 m from the 
ground level to the breast height and with inter-
spaces 0.2 m in the range from the breast height 
to the top of the stem. Distances from the tree 
base were measured using steel tape with pre-
cision 0.01 m, the diameters were recorded into 
electronic caliper with precision 1 mm.

The selection of splines used in this study 
is based on results of previous work (Kuželka 
2011a, 2011b), where several splines were com-
pared concerning their suitability to represent 
the stem profile of coniferous species. Three 
candidates were selected for further utilization: 
Catmull-Rom spline (Kochanek and Bartels 
1984) with tangent vector corrections, natural 
cubic spline and B-spline of 2nd degree (Piegl 
and Tiller 1996, Linkeová 2007).

Catmull-Rom spline is an easily comput-
able interpolation curve consisting of cubic seg-
ments. The way of connection of the segments 
ensures 1st degree continuity whereas the 2nd 
degree continuity is infracted in join points. 
This allows the curve to readily change the di-
rection at the expense of slightly unnatural look. 
Natural cubic spline is defined by cubic seg-
ments with second degree continuity preserved 
throughout the curve and zero torsion in the 
endpoints. It has the minimal curvature among 
all twice continuously differentiable interpolat-
ing curves. These properties and a smooth natu-
ral run make the natural cubic spline the most 
exploited representative of splines. B-spline is 
the most important representative of approxi-
mation splines, which does not fit the input 
points, but it follows their geometry. Clamped 
B-spline, which exactly fits the first and the last 
point, was used in this study.

The basic set of input points for spline com-
putation contained six input points. Four fixed 
input points represented diameters conven-
tional heights (base diameter, stump diameter, 
DBH and the height). Another two input points 
interactively added to describe the location of 
the most significant malformation. A position of 
the seventh input point was optimized to maxi-
mize the accuracy of the curve. It is obvious, 
that the optimal position of the next input point 
depends on the location of the two inserted 
points. If they are located in the lower stem, it 
is necessary to place the point so that it controls 
the upper part of the curve. With shifting the in-
serted points upwards also the additional point 
must be shifted so that the input points are 
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evenly distributed along the stem. Above cer-
tain threshold height it is not useful to specify 
more the curve above the inserted points; the 
accuracy of the curve is improved by placing the 
point rather to the lower part of the stem. 

To evaluate the accuracy of splines, residuals 
at each position of measured diameters were 
determined and five statistics were computed. 
Diameter bias (DB) shows, how much is the re-
sulting curve shifted against the original data. It 
helps to determine if a curve systematically un-
der- or overestimates the stem thickness. Mean 
absolute deviation (MAD) reflects the average 
distance between the predicted and the original 
diameters. Standard deviation of residues (SDR) 
helps to detect heterogeneity in residue values; 
it may detect oscillations. Mean squared residue 
(MSR) value discovers locally high deviation of 
the curve; high values of mean squared residue 
usually signify oscillations. Total volume dif-
ference (TVD) is the difference of total volume 
derived from the modeled spline curves and to-
tal volume derived from the measured profiles. 
The optimal positions of 7th input point were 
determined for each stem individually using 
multi-criteria optimizing method of aggregate 
objective function with ten criteria. The first five 
criteria were the medians of above mentioned 
statistics with weights set as 0.05, 0.05, 0.05, 0.1 
and 0.25, respectively. The second five criteria 
were variances of the same magnitudes with 
identical weight distribution. The target func-
tion value is calculated as the weighted sum of 
the normed criteria values. The alternative with 
the lowest value of the target function is con-
sidered as the best solution. Using this method 
the optimal placement for each individual stem 
was obtained. Three positions with the lowest 
value of the target functions were considered in 
the next analyses. Dependency of the three best 
positions of seventh input point on the position 
of inserted points was searched using linear re-
gression. With respect to the assumed type of 
dependence between the optimal positions of 
additional input point and the positions of the 
inserted points describing the stem irregularity, 
the resulting point set was split into two parts 
and linear regression was computed separately 
for each part (Fig. 1). The threshold value was 
determined in such way that the residual sum of 
squares is minimized.

Suitability of additional input point place-
ment according to the linear regression was 
reviewed. Several options of the seventh input 
point were compared. Firstly, the seventh point 
was placed to the optimal position determined 
individually for each stem. Secondly, the point 

was placed according to the linear regression. 
Thirdly, the point was placed in the center of 
the largest input point interspace. Fourthly (in 
tables labeled as Randomly I), the point was 
placed randomly near the center of the largest 
input point interspace (normal distribution 
with mean value equal to the center of the larg-
est interspace and with such variance that the 
interspace covers the random point with prob-
ability 99.9 %). Finally (in tables labeled as Ran-
domly II), the point was placed randomly into 
one of the two largest interspaces (uniform dis-
tribution). As the control variant served spline 
computed from six points only.

Programs for computation of separate splines 
as well as for statistical evaluation were written 
in MATLAB R2012a. For statistical comparison 
analysis of variance and Tukey’s HSD test were 
used.

Results
Expected relation between optimal position 

of the seventh point and positions of the in-
serted points was found only for Catmull-Rom 
spline. Therefore regression was fitted only for 
Catmull-Rom spline (Fig. 1). Coefficients of de-
termination of both lines are very low (0.29 and 
0.13 respectively), but the regression parameters 
are statistically proved to be significantly differ-
ent from zero. 

With natural cubic spline and B-spline the lo-
cation of the optimal input points is in principle 
independent on the positions of the inserted 
input points and it does not allow building the 
regression. Therefore general optimal position 
of the seventh point for all stems was calculated. 
It was found that both for natural cubic spline 
and B-spline the curve is the most accurate if 
the seventh point is placed in 20 % of the stem 
height. For evaluating different methods of 
placing the seventh point was the regression 
replaced by situating the additional point to the 
relative height 20 % of the stem height.

For all splines, according to expectations the 
lowest error values are found in case that the 
point is placed to its optimal position. But rarely 
the errors significantly differ from errors of 
other variants of point placement. 

As shows Tab. 1, the errors of Catmull-Rom 
splines with the additional point placed accord-
ing to the linear regression, into the center of 
largest interspace or randomly near the center 
are approximately equal. Statistical tests indicate 
that there mostly are no significant differences 
between placing the seventh point to its opti-
mal position, according to the regression and 
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to the center of the largest interspace. On the 
contrary, considerably worse are variants with 
only six points or with the seventh point placed 
randomly. The 6-point spline and splines with 
the seventh point placed according the regres-
sion and in the center of the largest interspace 
are shown in Fig. 2. Two characteristic stems 
with demonstrable irregularities were selected 
for the figure. The first stem is a representative 
of stems with a large branching in the middle of 
the stem height; the second stem illustrates an 
irregularity in the upper profile.

In natural cubic spline the seventh input 
point markedly reduces the high errors (Tab. 2) 
caused by uncontrollable oscillations (Fig. 3). 
The lowest error values are obtained by placing 
the seventh point to 20 % of the stem height. But 
for all variants the oscillation is still very strong.

For B-spline the results of the comparison 
(Tab. 3.) show that placing the additional point to 
the relative height 20 % significantly lowers the 
diameter bias and the total volume difference if 
compared with other variants of the additional 

point placement. On the contrary, values of 
MAD, SDR and MSR are higher, in some cases 
significantly. While placing the point to the rela-
tive height 20 % improves the shape of the curve 
in the lower stem, which is the most important 
for volume estimation, placing the point into 
the largest interspace between existing points 
results in more even distribution of input points 
and decrease of the deviations of the modeled 
curve from the real data.

Differences between individual spline types 
are also significant. 

Discussion
Oscillations of natural cubic spline caused 

by its second degree continuity have been al-
ready many times reported (eg. Goulding 1979, 
Lahtinen 1988). Natural cubic spline may be 
suitable for describing smooth profiles of co-
niferous trees, but is not able to cope with com-
plicated profiles of broadleaved trees. By this 
reason Goulding (1979) does not recommend 

Fig. 1:  Regression lines for Catmull-Rom spline. X values denote the relative height of the inserted points describing the stem irregular-
ity. Y values are the optimal position of the seventh input point. Solid line is the reggresion line, dashed lines denote borders of 
95 % confidence region.

Tab. 1:  Comparison of variants of placement of the seventh point for Catmull-Rom spline. If values in a column are followed by 
the same letter, their spline types are not significantly different in the particular aspect.

Variant of 7th point 
placement DB (cm) MAR (cm) SDR (cm) MSR (10-3 m2) TVD (%)

Optimal position 0.001a,b 0.394a 0.523a 0.033a 0.204a

Regression -0.020a,b 0.465b 0.585a,b 0.045a,b -0.051a

Center of largest interspace 0.039a 0.467b 0.576a,b 0.046a,b 1.076a

Randomly I (near center) -0.045a,b 0.483b 0.600b 0.050a,b -0.305a

Randomly II -0.042a,b 0.527b,c 0.634b,c 0.063b,c -0.357a

6-points spline -0.089b 0.570c 0.665c 0.071c -0.924a
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utilization of cubic splines for modeling pro-
files of malformed stems. Also Lahtinen (1988) 
recommends lowering the degree of continuity 
for more complicated profiles.

Also B-spline due to its approximation prop-
erty is not suitable for complicated stem profiles, 
although profiles of coniferous trees were well 
represented using B-spline. It smoothes the 
driving polygon and therefore it is not able to fit 
the rapid diameter drop following branching. 
Good choice is the utilization of Catmull-Rom 
spline.

Optimal input point combinations proposed 
by Smaltschinski (1983) or Figueiredo-Filho 
(1996) are not applicable for malformed profiles. 
Determination of optimal position individually 
for each stem in practice is out of the question, 
because it requires measurement of many di-
ameters from which one is selected as the best. 
Utilization of regression seems to be useless re-
garding identical results obtained by placing the 
additional input point around the center of the 
longest interspace. A comparison shows, that 
the average distance between the location de-
termined by the regression and the center of the 
largest interspace is only 6 % of the stem height 
(median value is only 2% of the stem height), 
which is a negligible distance. At the same time it 

is proved, that input point position determined 
in this way is not significantly worse than the 
best position of individual stems. 

It can be concluded, that for improving the 
accuracy the position of the seventh point is im-
portant. It should not be placed randomly, but 
equalizing the point distribution by placing the 
point in the center of the longest input point in-
terspace can be a reasonable way.

Tab. 2:  Comparison of variants of placement of the seventh point for natural cubic spline. If values in a column are followed by 
the same letter, their spline types are not significantly different in the particular aspect.

Variant of 7th point 
placement DB (cm) MAR (cm) SDR (cm) MSR (10-3 m2) TVD (%)

Optimal position -0.765a 2.411a 2.873a 1.354a 5.431a

20 % of stem height -0.507a,b 2.572a 3.070a 1.573a 15.207a

Center of largest interspace 1.005b,c 2.952a 3.797a 2.453a 47.234b,c

Randomly I (near center) 0.938b,c 3.037a,b 3.822a,b 2.418a 49.829b

Randomly II 2.424c 4.176b 4.961b 5.671a 99.684c

6-points spline 4.911d 7.243c 7.782c 14.169b 209.835d

Tab. 3:  Comparison of variants of placement of the seventh point for B-spline If values in a column are followed by the same 
letter, their spline types are not significantly different in the particular aspect.

Variant of 7th point 
placement DB (cm) MAR (cm) SDR (cm) MSR (10-3 m2) TVD (%)

Optimal position 0.098a,b 0.553a 0.760a,b 0.070a 0.973a,b

20 % of stem height 0.033a 0.621b 0.811b 0.086a,b -0.004a

Center of largest interspace 0.241c 0.610a,b 0.756a 0.079a,b 3.743c

Randomly I (near center) 0.204c 0.618b 0.774a,b 0.082a,b 2.848c

Randomly II 0.181a,b 0.654b 0.807b 0.089b,c 2.684b,c

6-points spline 0.163b,c 0.718c 0.857b 0.104c 2.506b,c
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Fig. 2:  Two stem profiles modeled by Catmull-Rom spline with 6 input points (top), with the seventh point placed according the regres-
sion (middle) and with seventh point placed in the centre of the longest point interspace (bottom).
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Fig. 3:  Two stem profiles modeled by natural cubic spline with 6 input points (top), with the seventh point placed to 20 % of stem heigth 
(middle) and with seventh point placed in the centre of the longest point interspace (bottom).
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Fig. 4:  Two stem profiles modeled by B-spline with 6 input points (top), with the seventh point placed to 20 % of stem heigth (middle) 
and with seventh point placed in the centre of the longest point interspace (bottom).
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