Beskydy 2017, 10, 17-26

https://doi.org/10.11118/beskyd201710010017

The variability of wood density and compression strength of Norway spruce (Picea abies/L./Karst.) within the stem

Petr Horáček, Marek Fajstavr, Marko Stojanović

Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic

References

1. Bergsted, A., Olesen, P.O. 2000: Models for predicting dry matter content of Norway spruce. Scandinavian Journal of Forest Research, 15(6): 633–644. <https://doi.org/10.1080/02827580050216888>
2. Bodig, J., Jayne, B.A. 1982: Mechanics of Wood. and Wood Composites. Krieger Publishing, 712 pp.
3. Brunden, M.N. 1964: Specific gravity and fiber length in crown-formed and stem-formed wood. Forest Products Journal, 14:13–17.
4. Danborg, F. 1994: Density variation and demarcation of the juvenile wood in Norway spruce. Danish Forest and Landscape Research Institute, Forskningserien, 10: 1–78.
5. Elliott, G.K. 1970: Wood density in conifers. Technical commentary. 44 pp.
6. Forest Products Laboratory 1999: Wood handbook—Wood as an engineering material. Gen. Tech. Rep. FPL–GTR–113. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 463 p.
7. Frimbong-Mensah, K. 1987: Fibrelength and basic density variation in the wood of Norway spruce (Picea abies /L./ Karst.) from northern Norway. Communications of the Norwegian Forest Research Institute, 40: 1–25.
8. Gryc, V. 2003: Vliv polohy ve kmeni na morfologii tracheid u smrku (Picea abies /L./ Karst.). In: MENDELNET 2003: Konference doktorandů LDF MZLU v Brně, 5: 53–58.
9. Hakkila, P. 1966: Investigation on the basic density of finish pine, spruce and birch wood. Communicationes Instituti Forestalis Fenniae, 61 (5): 98 pp.
10. Jaakkola, J.T., Mäkinen, H., Saranpää, P. 2005: Wood density in Norway spruce: changes with thinning intensity and tree age. Canadian Journal of Forest Research, 35(7): 1767–1778. <https://doi.org/10.1139/x05-118>
11. Johansson, K. 1993: Influence of initial spacing and tree class on the basic density of Picea abies. Scandinavian Journal of Forest Research, 8(1): 18–27. <https://doi.org/10.1080/02827589309382752>
12. Jyske, T., Mäkinen, H., Saranpää, P. 2008: Wood density within Norway spruce stems. Silva Fennica, 42(3): 439–455. <https://doi.org/10.14214/sf.248>
13. Knigge, W. 1960: The natural variability of wood as it affects selection of test material and structural applications of wood. In: Proceedings World Forestry Congress 5th, 3: 1362–1367.
14. Kollmann, F. 1951: Technologie des Holzes und der Holzwerkstoffe. 2. Auflage; Springer-Verlag Berlin, Göttingen, Heidelberg, 2233 pp.
15. Lavers, G.M. 1969: The Strength Properties of Timbers. For. Prod. Res. Bull. 50, HMSO, London.
16. Luostarinen, K., Pikkarainen, L., Ikonen, V.P., Gerendiain, A.Z., Pulkkinen, P., Peltola, H. 2017: Relationships of wood anatomy with growth and wood density in three Norway spruce clones of Finnish origin. Canadian Journal of Forest Research, 47 (9): 1184–1192. <https://doi.org/10.1139/cjfr-2017-0025>
17. Molteberg, D., Høibø, O. 2006: Development and variation of wood density, kraft pulp yield and fibre dimensions in young Norway spruce (Picea abies). Wood Science and Technology, 40(3): 173–189. <https://doi.org/10.1007/s00226-005-0020-2>
18. Olesen, P.O. 1976: The interrelation between basic density and ring width of Norway spruce. Det Forstlige Forsøksvaesen i Danmark, 34(4): 339–359.
19. Olesen, P.O.1977: The variation of the basic density level and tracheid width within the juvenile and mature wood of Norway spruce. Forest Tree Improvement, 12:1–21.
20. Panshin, A.J., de Zeeuw, C. 1980: Textbook of wood technology. McGraw-Hill, Inc. New York, 736 pp.
21. Pearson, R.G., Gilmore, R.C. 1980: Effect of fast growth rate on the mechanical properties of loblolly pine. Forest Products Journal, 30 (5): 47–54
22. Petty, J.A., Macmillan, D.C., Steward, C.M. 1990: Variation of density and growth ring width in stems of Sitka and Norway spruce. Forestry, 63(1): 39–49. <https://doi.org/10.1093/forestry/63.1.39>
23. Repola, J. 2006: Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva Fennica, 40(4): 673–685.
24. Saranpää, P. 1994. Basic density, longitudinal shrinkage and tracheid length of juvenile wood of Picea abies. Scandinavian Journal of Forest Research, 9(1): 68–74. <https://doi.org/10.1080/02827589409382814>
25. Saranpää, P. 2003. Wood density and growth. In: Barnett, J.R., Jeronimidis, G. (eds.): Wood quality and its biological basis. Blackwell Publishing & CRC Press, Biological Sciences Series, Bodmin, Great Britain. p. 87–117.
26. Spurr, S.H., Hsiung, W.-Y. 1954: Growth rate and specific gravity in conifers. Journal of Forestry Research, 52 (3): 191–200.
27. Trendelenburg, R.H., Mayer-Wegelin, H. 1955: Das Holz als Rohstoff. Hanser Verlag, Munchen, 541 pp.
28. Tsoumis, G.1991: Science and Technology of Wood: Structure, Properties, Utilization. Structure, Properties, Utilization. Chapman & Hall, New York, 494 pp.
29. Vorreiter, L. 1949: Holztechnologisches Handbuch. 1. Band, Verlag Georg Fromme & Co., Wien, 548 pp.
30. Wangaard, F.F. 1950: The Mechanical properties of Wood. J. Wiley & Sons, New York, 377 pp.
31. Wilhelmsson, L., Arlinger, J., Spångberg, K., Lunquist, S.-O., Grahn, T., Hedenberg, Ö., Olsson, L. 2002: Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. Scandinavian Journal of Forest Research, 17: 330–350. <https://doi.org/10.1080/02827580260138080>
32. Zobel, B.J., Van Buijtenen, J.P. 1989: Wood variations. Its Causes and Control. Springer Series in Wood Science. Springer-Verlag Berlin, London, Tokyo. 363 pp.
front cover

Current issue

ISSN 1803-2451 (Print)

ISSN 1805-9538 (Online)

Archive