Beskydy 2017, 10, 41-48
https://doi.org/10.11118/beskyd201710010041
Application of Raman spectroscopy to analyse lignin/cellulose ratio in Norway spruce tree rings
References
1. 1997: FT-Raman spectroscopy of wood: Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Applied Spectroscopy, 51: 1648-1655.
< , U.P., Ralph, S.A. https://doi.org/10.1366/0003702971939316>
2. 2011: FT-Raman investigation of milled-wood lignins: Softwood, hardwood, and chemically modified black spruce lignins. Journal of Wood Chemistry and Technology, 31: 324-344.
< , U.P., McSweeny, J.D., Ralph, S.A. https://doi.org/10.1080/02773813.2011.562338>
3. 2005: Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta, 222: 448–457.
< , R., Baranska, M., Schulz, H. https://doi.org/10.1007/s00425-005-1566-9>
4. 2015: The cell biology of lignification in higher plants. Annals of Botany, 115: 1053-1074.
< , J., Serk, H., Granlund, I., Pesquet, E. https://doi.org/10.1093/aob/mcv046>
5. 2008): Perturbed lignification impacts tree growth in hybrid poplar – a function of sink strength vascular integrity, and photosynthetic assimilation. Plant Physiology, 148: 1229-1237.
< , H.D., Samuels, A.L., Guy, R.D., Mansfield, S.D. (https://doi.org/10.1104/pp.108.125500>
6. 2007: The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy, 21: 69-89.
< , N., Schwanninger, M. https://doi.org/10.1155/2007/498206>
7. 2012: Imaging of plant cell walls by confocal Raman microscopy. Nature Protocols, 7: 1694-1708.
< , N., Keplinger, T., Harrington, M. https://doi.org/10.1038/nprot.2012.092>
8. Gierlinger, N., Keplinger, T., Harrington, M., Schwanninger, M. 2013: Raman imaging of lignocellulosic feedstock. In: van de Ven, T. and Kadla, J. (eds.) Cellulose Biomass Conversion 3; INTECH, Rijeka, p. 159.
9. 2014: Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA). Frontiers in Plant Science, 5: 306.
< , N. https://doi.org/10.3389/fpls.2014.00306>
10. 2000: The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 14: 409-414.
< , W., Grabner, M., Wimmer, R. https://doi.org/10.1007/s004680000057>
11. Kaczor, A., Pilarczyk, M. 2014: Structural and spatial analysis of carotenoids in a single cell monitored by Raman spectroscopy. In: Baranska M. (ed.) Optical spectroscopy and computational methods in biology and medicine; Springer, Dordrecht, p 309.
12. Kollmann, F. 1951: Technologie des holzes und der Holzwerkstoffe, erster band. Springer, Berlin Göttingen Heidelberg, p. 1050.
13. 2016: Lignin in woody plants under water stress: a review. Floresta Ambiente, 23: 589-597.
< , U.C., Davis, A.S., Malavasi, M. de M. https://doi.org/10.1590/2179-8087.143715>
14. 2010: Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52: 360-376.
< , J.C.M.S., Bonine, C.A.V., Viana, J. de O.F., Dornales, M.C., Mazzafera, P. https://doi.org/10.1111/j.1744-7909.2010.00892.x>
15. 2014: Elucidating structural and compositional changes in plant tissues and single cells by Raman spectroscopic imaging. Spectroscopy Europe, 26: 11-14.
, B., Stefke, B., Hauser M.-T., Gierlinger, N.
16. 2015: Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude. Tree Physiology, 35: 47-60.
< , P., Klem, K., Holub, P., Novotná, K., Večeřová, K., Kozáčiková, M., Rivas-Ubach, A., Sardans, J., Marek, M.V., Peńuelas, J., Urban, O. https://doi.org/10.1093/treephys/tpu104>
17. Ralph, J., Hatfield, R.D., Sederoff, R.R., MacKay, J.J. 1998: Order and randomness in lignin and lignification: Is a new paradigm for lignification required? Research Summaries, 39-41.
18. 2008: FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (Fagus sylvatica L.) trees grown at different sites. Holzforschung, 62: 530-538.
< , R., Müller, G., Naumann, A., Polle, A. https://doi.org/10.1515/HF.2008.104>
19. 2007: Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vibrational Spectroscopy, 43: 13-25.
< , H., Baranska, M. https://doi.org/10.1016/j.vibspec.2006.06.001>
20. Trendelenburg, R. 1939: Das Holz als Rohstoff. Lehmanns Verlag, München-Berlin, p. 435.
21. 2015: A review of recent application of near infrared spectroscopy to wood science and technology. Journal of Wood Science, 61: 213-220.
< , S., Kobori, H. https://doi.org/10.1007/s10086-015-1467-x>
22. 2016: Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert. Analytical and Bioanalytical Chemistry, 408: 4083-4092.
< , P., Ascaso, C., Artieda, O., Wierzchos, J. https://doi.org/10.1007/s00216-016-9497-9>
23. 2017: Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectrochimica Acta A, 170: 234-241.
< , P., Novotná, K., Hodaňová, P., Rapantová, B., Klem, K. https://doi.org/10.1016/j.saa.2016.07.025>
24. 2010: The origin and evolution of lignin biosynthesis. New Phytologist, 187: 273-285.
< , J.K., Chapple, C. https://doi.org/10.1111/j.1469-8137.2010.03327.x>
25. 1987: Band assignments in the Raman spectra of celluloses. Carbohydrate Research, 160: 113-129.
< , J.H., Atalla, R.H. https://doi.org/10.1016/0008-6215(87)80306-3>