Beskydy 2017, 10, 41-48

https://doi.org/10.11118/beskyd201710010041

Application of Raman spectroscopy to analyse lignin/cellulose ratio in Norway spruce tree rings

Petr Vítek, Karel Klem, Otmar Urban

Global Change Research Institute CAS, Bělidla 4a, 603 00 Brno, Czech Republic

References

1. Agarwal, U.P., Ralph, S.A. 1997: FT-Raman spectroscopy of wood: Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Applied Spectroscopy, 51: 1648-1655. <https://doi.org/10.1366/0003702971939316>
2. Agarwal, U.P., McSweeny, J.D., Ralph, S.A. 2011: FT-Raman investigation of milled-wood lignins: Softwood, hardwood, and chemically modified black spruce lignins. Journal of Wood Chemistry and Technology, 31: 324-344. <https://doi.org/10.1080/02773813.2011.562338>
3. Baranski, R., Baranska, M., Schulz, H. 2005: Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta, 222: 448–457. <https://doi.org/10.1007/s00425-005-1566-9>
4. Barros, J., Serk, H., Granlund, I., Pesquet, E. 2015: The cell biology of lignification in higher plants. Annals of Botany, 115: 1053-1074. <https://doi.org/10.1093/aob/mcv046>
5. Coleman, H.D., Samuels, A.L., Guy, R.D., Mansfield, S.D. (2008): Perturbed lignification impacts tree growth in hybrid poplar – a function of sink strength vascular integrity, and photosynthetic assimilation. Plant Physiology, 148: 1229-1237. <https://doi.org/10.1104/pp.108.125500>
6. Gierlinger, N., Schwanninger, M. 2007: The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy, 21: 69-89. <https://doi.org/10.1155/2007/498206>
7. Gierlinger, N., Keplinger, T., Harrington, M. 2012: Imaging of plant cell walls by confocal Raman microscopy. Nature Protocols, 7: 1694-1708. <https://doi.org/10.1038/nprot.2012.092>
8. Gierlinger, N., Keplinger, T., Harrington, M., Schwanninger, M. 2013: Raman imaging of lignocellulosic feedstock. In: van de Ven, T. and Kadla, J. (eds.) Cellulose Biomass Conversion 3; INTECH, Rijeka, p. 159.
9. Gierlinger, N. 2014: Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA). Frontiers in Plant Science, 5: 306. <https://doi.org/10.3389/fpls.2014.00306>
10. Gindl, W., Grabner, M., Wimmer, R. 2000: The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 14: 409-414. <https://doi.org/10.1007/s004680000057>
11. Kaczor, A., Pilarczyk, M. 2014: Structural and spatial analysis of carotenoids in a single cell monitored by Raman spectroscopy. In: Baranska M. (ed.) Optical spectroscopy and computational methods in biology and medicine; Springer, Dordrecht, p 309.
12. Kollmann, F. 1951: Technologie des holzes und der Holzwerkstoffe, erster band. Springer, Berlin Göttingen Heidelberg, p. 1050.
13. Malavasi, U.C., Davis, A.S., Malavasi, M. de M. 2016: Lignin in woody plants under water stress: a review. Floresta Ambiente, 23: 589-597. <https://doi.org/10.1590/2179-8087.143715>
14. Moura, J.C.M.S., Bonine, C.A.V., Viana, J. de O.F., Dornales, M.C., Mazzafera, P. 2010: Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52: 360-376. <https://doi.org/10.1111/j.1744-7909.2010.00892.x>
15. Prats-Mateu, B., Stefke, B., Hauser M.-T., Gierlinger, N. 2014: Elucidating structural and compositional changes in plant tissues and single cells by Raman spectroscopic imaging. Spectroscopy Europe, 26: 11-14.
16. Rajsnerová, P., Klem, K., Holub, P., Novotná, K., Večeřová, K., Kozáčiková, M., Rivas-Ubach, A., Sardans, J., Marek, M.V., Peńuelas, J., Urban, O. 2015: Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude. Tree Physiology, 35: 47-60. <https://doi.org/10.1093/treephys/tpu104>
17. Ralph, J., Hatfield, R.D., Sederoff, R.R., MacKay, J.J. 1998: Order and randomness in lignin and lignification: Is a new paradigm for lignification required? Research Summaries, 39-41.
18. Rana, R., Müller, G., Naumann, A., Polle, A. 2008: FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (Fagus sylvatica L.) trees grown at different sites. Holzforschung, 62: 530-538. <https://doi.org/10.1515/HF.2008.104>
19. Schulz, H., Baranska, M. 2007: Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vibrational Spectroscopy, 43: 13-25. <https://doi.org/10.1016/j.vibspec.2006.06.001>
20. Trendelenburg, R. 1939: Das Holz als Rohstoff. Lehmanns Verlag, München-Berlin, p. 435.
21. Tsuchikawa, S., Kobori, H. 2015: A review of recent application of near infrared spectroscopy to wood science and technology. Journal of Wood Science, 61: 213-220. <https://doi.org/10.1007/s10086-015-1467-x>
22. Vítek, P., Ascaso, C., Artieda, O., Wierzchos, J. 2016: Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert. Analytical and Bioanalytical Chemistry, 408: 4083-4092. <https://doi.org/10.1007/s00216-016-9497-9>
23. Vítek, P., Novotná, K., Hodaňová, P., Rapantová, B., Klem, K. 2017: Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectrochimica Acta A, 170: 234-241. <https://doi.org/10.1016/j.saa.2016.07.025>
24. Weng, J.K., Chapple, C. 2010: The origin and evolution of lignin biosynthesis. New Phytologist, 187: 273-285. <https://doi.org/10.1111/j.1469-8137.2010.03327.x>
25. Wiley, J.H., Atalla, R.H. 1987: Band assignments in the Raman spectra of celluloses. Carbohydrate Research, 160: 113-129. <https://doi.org/10.1016/0008-6215(87)80306-3>
front cover

Current issue

ISSN 1803-2451 (Print)

ISSN 1805-9538 (Online)

Archive