Beskydy 2017, 10, 67-74
https://doi.org/10.11118/beskyd201710010067
Elevated CO2 concentration affects vertical distribution of photosynthetic activity in Calamagrostis arundinacea (L.) Roth
References
1. 2011: Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology, 168: 1909–1918.
< , L. H., Kakani, V. G., Vu, J. C., Boote, K. J. https://doi.org/10.1016/j.jplph.2011.05.005>
2. 2008: Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation. Plant, Cell & Environment, 31: 50–61.
, T., Noguchi, K. O., Terashima, I.
3. 2008: Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiology, 148: 1707–1720.
< , J., Martre, P., Andrieu, B. https://doi.org/10.1104/pp.108.124156>
4. 1989: Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh. Oecologia, 78: 20–26.
< , P. S., Drake, B. G., Leadley, P. W., Arp, W. J., Whigham, D. F. https://doi.org/10.1007/BF00377193>
5. 2000: Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy. Impact on canopy photosynthesis. Annals of Botany, 86: 821–831.
< , M. F., Van Oijen, M., Schapendonk, A. H. C. M., Pot, C. S., Rabbinge, R. https://doi.org/10.1006/anbo.2000.1244>
6. 2005: Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment, 28: 834–849.
< , G., Magnani, F. https://doi.org/10.1111/j.1365-3040.2005.01333.x>
7. IPCC 2007: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.
8. 2013: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499: 324–327.
< , T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., Richardson, A. D. https://doi.org/10.1038/nature12291>
9. 2014: Changes in vertical distribution of spectral reflectance within spring barley canopy as an indicator of nitrogen nutrition, canopy structure and yield parameters. Agriculture (Poľnohospodárstvo), 60: 41–49.
, K., Rajsnerová, P., Novotná, K., Míša, P., Křen, J.
10. 2001: Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree Physiology, 21: 951–958.
< , T., Kitao, M., Maruyama, Y., Mori, S., Lei, T. T. https://doi.org/10.1093/treephys/21.12-13.951>
11. 2002: Shoot structure and growth along a vertical profile within a Populus–Tilia canopy. Tree Physiology, 22: 1167–1175.
< , O., Tulva, I. https://doi.org/10.1093/treephys/22.15-16.1167>
12. 2009: Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60: 2859–2876.
< , A. D., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., Ort, D. R. https://doi.org/10.1093/jxb/erp096>
13. 2002: Effects of age and ontogeny on photosynthetic responses of a determinate annual plant to elevated CO2 concentrations. Plant, Cell & Environment, 25: 359–368.
< , J. D., Wang, X. Z., Griffin, K. L., & Tissue, D. T. https://doi.org/10.1046/j.0016-8025.2001.00815.x>
14. 2003: Vertical leaf nitrogen distribution in relation to nitrogen status in grassland plants. Annals of Botany, 92: 679–688.
< , M., Stroh, K., Schnyder, H. https://doi.org/10.1093/aob/mcg188>
15. 2000: High CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS letters, 479: 19–24.
< , F., Sonnewald, U. https://doi.org/10.1016/S0014-5793(00)01873-1>
16. 2013: Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Global Change Biology, 19: 45–63.
< , N. G., Dukes, J. S. https://doi.org/10.1111/j.1365-2486.2012.02797.x>
17. 2001: Elevated [CO2] and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a 3-year field study. Trees-Structure and Function, 15: 403–413.
< , B. D. https://doi.org/10.1007/s004680100121>
18. 1999: The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment, 22: 583–621.
< , M., Krapp, A. https://doi.org/10.1046/j.1365-3040.1999.00386.x>
19. 2008: Future atmospheric CO2 leads to delayed autumnal senescence. Global Change Biology, 14: 264–275.
< , G., Tallis, M. J., Giardina, C. P., Percy, K. E., Miglietta, F., Gupta, P. S., Gioli, B., Calfapietra, C., Gielen, B., Kubiske, M., Scarascia-Mugnozza, G.E., Kets, K., Long, S.P., Karnosky, D. https://doi.org/10.1111/j.1365-2486.2007.01473.x>
20. 2004: Long-term acclimation of leaf production, development, longevity and quality following 3 yr exposure to free-air CO2 enrichment during canopy closure in Populus. New Phytologist, 162: 413–426.
< , P. J., Calfapietra, C., Kuzminsky, E., Puleggi, R., Ferris, R., Nathoo, M., Pleasants, L.J., De Angelis, P. Taylor, G. https://doi.org/10.1111/j.1469-8137.2004.01057.x>
21. 2001: Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosynthetica, 39: 395–401.
< , O., Janouš, D., Pokorný, R., Marková, I., Pavelka, M., Fojtík, Z., Šprtová, M., Kalina, J. Marek, M. V. https://doi.org/10.1023/A:1015134427592>
22. 2012: Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Functional Ecology, 26: 46–55.
< , O., Klem, K., Ač, A., Havránková, K., Holišová, P., Navrátil, M., Zitová, M., Kozlová, K., Pokorný, R., Šprtová, M., Tomášková, I., Špunda, V., Grace, J. https://doi.org/10.1111/j.1365-2435.2011.01934.x>
23. 2011: Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology, 31: 117–130.
< , J. M., Norby, R. J., Wullschleger, S. D. https://doi.org/10.1093/treephys/tpr002>
24. 2006: The role of sugars in integrating environmental signals during the regulation of leaf senescence. Journal of Experimental Botany, 57: 391–399.
< , A., Purdy, S., MacLean, J. A., Pourtau, N. https://doi.org/10.1093/jxb/eri279>
25. 2001: Ontogeny modifies the effects of water stress on stomatal control, leaf area duration and biomass partitioning of Pennisetum glaucum. New Phytologist, 149: 71–82.
< , T., Payne, W., Renno, J. F. https://doi.org/10.1046/j.1469-8137.2001.00008.x>
26. 2005: Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis. Physiologia Plantarum, 123: 272–280.
< , Z. Z., Zhou, G. S. https://doi.org/10.1111/j.1399-3054.2005.00455.x>