Beskydy 2017, 10, 67-74

https://doi.org/10.11118/beskyd201710010067

Elevated CO2 concentration affects vertical distribution of photosynthetic activity in Calamagrostis arundinacea (L.) Roth

Karel Klem, Petr Holub, Otmar Urban

Global Change Research Institute CAS, Bělidla 986/4a, Brno CZ-603 00, Czech Republic

References

1. Allen, L. H., Kakani, V. G., Vu, J. C., Boote, K. J. 2011: Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology, 168: 1909–1918. <https://doi.org/10.1016/j.jplph.2011.05.005>
2. Araya, T., Noguchi, K. O., Terashima, I. 2008: Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation. Plant, Cell & Environment, 31: 50–61.
3. Bertheloot, J., Martre, P., Andrieu, B. 2008: Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiology, 148: 1707–1720. <https://doi.org/10.1104/pp.108.124156>
4. Curtis, P. S., Drake, B. G., Leadley, P. W., Arp, W. J., Whigham, D. F. 1989: Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh. Oecologia, 78: 20–26. <https://doi.org/10.1007/BF00377193>
5. Dreccer, M. F., Van Oijen, M., Schapendonk, A. H. C. M., Pot, C. S., Rabbinge, R. 2000: Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy. Impact on canopy photosynthesis. Annals of Botany, 86: 821–831. <https://doi.org/10.1006/anbo.2000.1244>
6. Grassi, G., Magnani, F. 2005: Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment, 28: 834–849. <https://doi.org/10.1111/j.1365-3040.2005.01333.x>
7. IPCC 2007: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.
8. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., Richardson, A. D. 2013: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499: 324–327. <https://doi.org/10.1038/nature12291>
9. Klem, K., Rajsnerová, P., Novotná, K., Míša, P., Křen, J. 2014: Changes in vertical distribution of spectral reflectance within spring barley canopy as an indicator of nitrogen nutrition, canopy structure and yield parameters. Agriculture (Poľnohospodárstvo), 60: 41–49.
10. Koike, T., Kitao, M., Maruyama, Y., Mori, S., Lei, T. T. 2001: Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree Physiology, 21: 951–958. <https://doi.org/10.1093/treephys/21.12-13.951>
11. Kull, O., Tulva, I. 2002: Shoot structure and growth along a vertical profile within a Populus–Tilia canopy. Tree Physiology, 22: 1167–1175. <https://doi.org/10.1093/treephys/22.15-16.1167>
12. Leakey, A. D., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., Ort, D. R. 2009: Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60: 2859–2876. <https://doi.org/10.1093/jxb/erp096>
13. Lewis, J. D., Wang, X. Z., Griffin, K. L., & Tissue, D. T. 2002: Effects of age and ontogeny on photosynthetic responses of a determinate annual plant to elevated CO2 concentrations. Plant, Cell & Environment, 25: 359–368. <https://doi.org/10.1046/j.0016-8025.2001.00815.x>
14. Lötscher, M., Stroh, K., Schnyder, H. 2003: Vertical leaf nitrogen distribution in relation to nitrogen status in grassland plants. Annals of Botany, 92: 679–688. <https://doi.org/10.1093/aob/mcg188>
15. Ludewig, F., Sonnewald, U. 2000: High CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS letters, 479: 19–24. <https://doi.org/10.1016/S0014-5793(00)01873-1>
16. Smith, N. G., Dukes, J. S. 2013: Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Global Change Biology, 19: 45–63. <https://doi.org/10.1111/j.1365-2486.2012.02797.x>
17. Sigurdsson, B. D. 2001: Elevated [CO2] and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a 3-year field study. Trees-Structure and Function, 15: 403–413. <https://doi.org/10.1007/s004680100121>
18. Stitt, M., Krapp, A. 1999: The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment, 22: 583–621. <https://doi.org/10.1046/j.1365-3040.1999.00386.x>
19. Taylor, G., Tallis, M. J., Giardina, C. P., Percy, K. E., Miglietta, F., Gupta, P. S., Gioli, B., Calfapietra, C., Gielen, B., Kubiske, M., Scarascia-Mugnozza, G.E., Kets, K., Long, S.P., Karnosky, D. 2008: Future atmospheric CO2 leads to delayed autumnal senescence. Global Change Biology, 14: 264–275. <https://doi.org/10.1111/j.1365-2486.2007.01473.x>
20. Tricker, P. J., Calfapietra, C., Kuzminsky, E., Puleggi, R., Ferris, R., Nathoo, M., Pleasants, L.J., De Angelis, P. Taylor, G. 2004: Long-term acclimation of leaf production, development, longevity and quality following 3 yr exposure to free-air CO2 enrichment during canopy closure in Populus. New Phytologist, 162: 413–426. <https://doi.org/10.1111/j.1469-8137.2004.01057.x>
21. Urban, O., Janouš, D., Pokorný, R., Marková, I., Pavelka, M., Fojtík, Z., Šprtová, M., Kalina, J. Marek, M. V. 2001: Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosynthetica, 39: 395–401. <https://doi.org/10.1023/A:1015134427592>
22. Urban, O., Klem, K., Ač, A., Havránková, K., Holišová, P., Navrátil, M., Zitová, M., Kozlová, K., Pokorný, R., Šprtová, M., Tomášková, I., Špunda, V., Grace, J. 2012: Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Functional Ecology, 26: 46–55. <https://doi.org/10.1111/j.1365-2435.2011.01934.x>
23. Warren, J. M., Norby, R. J., Wullschleger, S. D. 2011: Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology, 31: 117–130. <https://doi.org/10.1093/treephys/tpr002>
24. Wingler, A., Purdy, S., MacLean, J. A., Pourtau, N. 2006: The role of sugars in integrating environmental signals during the regulation of leaf senescence. Journal of Experimental Botany, 57: 391–399. <https://doi.org/10.1093/jxb/eri279>
25. Winkel, T., Payne, W., Renno, J. F. 2001: Ontogeny modifies the effects of water stress on stomatal control, leaf area duration and biomass partitioning of Pennisetum glaucum. New Phytologist, 149: 71–82. <https://doi.org/10.1046/j.1469-8137.2001.00008.x>
26. Xu, Z. Z., Zhou, G. S. 2005: Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis. Physiologia Plantarum, 123: 272–280. <https://doi.org/10.1111/j.1399-3054.2005.00455.x>
front cover

Current issue

ISSN 1803-2451 (Print)

ISSN 1805-9538 (Online)

Archive