Beskydy 2017, 10, 113-122
https://doi.org/10.11118/beskyd201710010113
Temperature conditions at the mountain study site of Bílý Kříž (the Beskids Mts.) during the past 20 years
References
1. , J., Fibich, P., Šantrůčková, H., Doležal, J., Štěpánek, P., Kopáček, J., Hunová, I., Oulehle, F., Tumajer, J., Cienciala, E. 2017: Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Science of the Total Environment, 609: 506–516.
<https://doi.org/10.1016/j.scitotenv.2017.07.134>
2. , G.B. 2008: Forests and climate change: forcing, feedbacks, and the climate benefits of forest. Science, 320: 1444–1449.
<https://doi.org/10.1126/science.1155121>
3. , A., Janssens, I.A., Yuste, J.C., Ceulemans, R. 2004: Seasonal changes in photosynthesis, respiration and NEE of a mixed temperate forest. Agricultural and Forest Meteorology, 126: 15–31.
<https://doi.org/10.1016/j.agrformet.2004.05.002>
4. , J.M., Govind, A., Sonnentag, O., Zhang, Y., Barr, A., Amiro, B. 2006. Leaf area index measurements at Fluxnet-Canada forest sites. Agricultural and Forest Meteorology, 140: 257−268.
<https://doi.org/10.1016/j.agrformet.2006.08.005>
5. , X., Xu, L. 2012: Temperature controls on the spatial pattern of tree phenology in China’s temperate zone. Agricultural and Forest Meteorology, 154–155: 195–202.
<https://doi.org/10.1016/j.agrformet.2011.11.006>
6. , R.A., Dash, J., Rodriguez-Galiano, V.F., Janous, D., Pavelka, M., Marek, M.V. 2016: Extreme warm temperatures alter forest phenology and productivity in Europe. Science of the Total Environment, 563–564: 486–495.
<https://doi.org/10.1016/j.scitotenv.2016.04.124>
7. , A.-E., Piticar, A., Ciupertea, A.-F., Roşca, C.F. 2016: Changes in heat waves indices in Romania over the period 1961–2015. Global and Planetary Change, 146: 109–121.
<https://doi.org/10.1016/j.gloplacha.2016.08.016>
8. , A.W., Bradford, J.B., Fraver, S., Palik, B.J. 2011: Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. Forest Ecology and Management, 262: 803–816.
<https://doi.org/10.1016/j.foreco.2011.05.014>
9. , H., Unger, N. 2015: Contrasting regional versus global radiative forcing by megacity pollution emissions. Atmospheric Environment, 119: 322–329.
<https://doi.org/10.1016/j.atmosenv.2015.08.055>
10. , M., Elizbarashvili, E., Tatishvili, M., Elizbarashvili, S., Meskhia, R., Kutaladze, N., King, L., Keggenhoff, I., Khardziani, T. 2017: Georgian climate change under global warming conditions. Annals of Agrarian Science, 15: 17–25.
<https://doi.org/10.1016/j.aasci.2017.02.001>
11. , A.K., Bräuning, A., Timonen, M., Rautio, P. 2017: Growth response of Scots pines in polar-alpine tree-line to a warming climate. Forest Ecology and Management, 399: 94–107.
<https://doi.org/10.1016/j.foreco.2017.05.027>
12. , A., Biron, P., Lemoine, D. 2000: Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 100: 291–308.
<https://doi.org/10.1016/S0168-1923(99)00151-3>
13. , A., Saucie, J.-P. 2008. Volume increment efficiency of Picea mariana in northern Ontario, Canada. Forest Ecology and Management, 255: 1647−1653.
<https://doi.org/10.1016/j.foreco.2007.11.024>
14. , L., Marín, A., Sanz-Lázaro, C. 2017: Future heat-waves due to climate change threaten the survival of Posidonia oceanica seedling. Environmenta Pollution, 230: 40–45.
<https://doi.org/10.1016/j.envpol.2017.06.039>
15. , J. 2012: A robust spatial recontruction of April to September temperature in Europe: Comparison between the medieval period and the recent warming with a focus on extreme values. Global and Planetary Change, 84–85: 14–22.
<https://doi.org/10.1016/j.gloplacha.2011.07.007>
16. , E.J., Miranda, B.R., De Bruijn, A.M.G., Sturtevant, B.R., Kubiske, M.E. 2017: Do rising temperatures always increase forest productivity? Interacting effects of temperature, precipitation, cloudiness and soil texture on tree species growth and competition. Environmental Modelling & Software, 97: 171–183.
<https://doi.org/10.1016/j.envsoft.2017.08.001>
17. , D., Grelle, A. 2016: Changing temperature response of respiration turns boreal forest from carbon sink into carbon source. Agricultural and Forest Meteorology, 223: 30–38.
<https://doi.org/10.1016/j.agrformet.2016.03.020>
18. , C., Dash, J., Atkinson, P.M. 2014: Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sensing of Environment, 143: 154–170.
<https://doi.org/10.1016/j.rse.2013.11.020>
19. , D., Seidl, R., Holeksa, J., Kuuluvainen, T., Nagel, T.A., Panayotov, M., Svoboda, M., Thorn, S., Vacchiano, G., Whitlock, C., Wohlgemuth, T., Bebi, P. 2017: A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecology and Management, 388: 120–131.
<https://doi.org/10.1016/j.foreco.2016.07.037>
20. , M., Maroschek, M., Nethere, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M.J., Marchetti, M. 2010: Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259: 698–709.
<https://doi.org/10.1016/j.foreco.2009.09.023>
21. , J., Herrero, A., Ruiz-Benito, P., Zavala, M.A. 2017: Resilience to drought in a dry forest: Insights from demographic rates. Forest Ecology and Management, 389: 167–175.
<https://doi.org/10.1016/j.foreco.2016.12.012>
22. Marková, I., Pavelka, M., Tomášková, I., Janouš, D. 2009: Yearbook of meteorological measurements 2007. Experimental ecological study site Bílý Kříž (Moravian-Silesian Beskids Mts.). Ústav systémové biologie a ekologie AV ČR, v. v. i., Brno, 81 pp.
23. , T., Zhukova, N., Chelidze, T., Founda, D., Gerasopoulos, E. 2017: Analysis of long-term variation of the annual number of warmer and colder days using Mahalanobis distance metrics – A case study for Athens. Physica A: Statistical Mechanics and its Applications, 487: 22–31.
<https://doi.org/10.1016/j.physa.2017.05.065>
24. , Z.A., Grant, R.F., Schwalm, Ch. 2016: Contrasting changes in gross primary productivity of different regions of North America as affected by warming in recent decades. Agricultural and Forest Meteorology, 218–219: 50–64.
<https://doi.org/10.1016/j.agrformet.2015.11.016>
25. , D., Yang, Z., Cohen, W.B., Bell, D.M. 2016: A forest vulnerability index based on drought and high temperatures. Remote Sensing of Environment, 173: 314–325.
<https://doi.org/10.1016/j.rse.2015.11.024>
26. , L., Rasse, D.P., Vincke, C., Aubinet, M., François, L. 2002: Predicting transpiration from forest stands in Belgium for the 21st century. Agricultural and Forest Meteorology, 111: 265–282.
<https://doi.org/10.1016/S0168-1923(02)00039-4>
27. , H.W., Williamson, T.B., Macaulay, C., Mahony, C. 2016: Assessing the potential for forest management practitioner participation in climate change adaptation. Forest Ecology and Management, 360: 388–399.
<https://doi.org/10.1016/j.foreco.2015.09.038>
28. NOAA National Centers for Environmental Information, State of the Climate: Global Analysis for Annual 2016, published online January 2017, retrieved on September 11, 2017 from https://www.ncdc.noaa.gov/sotc/global/201613.
29. , M.D., Pockman, W.T., Pangle, R.E., Limousin, J.M., Plaut, J.A., McDowell, N.G. 2015: Winter climate change promotes an altered spring growing season in pinon pine-juniper woodlands. Agricultural and Forest Meteorology, 214−215: 357−368.
<https://doi.org/10.1016/j.agrformet.2015.08.269>
30. , O. 1992: Global warming: greenhouse gases versus aerosols. Science of the Total Environment, 126: 199–204.
<https://doi.org/10.1016/0048-9697(92)90491-A>
31. , V., Feng, Y. 2009: Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmospheric Environment, 43: 37–50.
<https://doi.org/10.1016/j.atmosenv.2008.09.063>
32. , L.E. 2008: The response of terrestrial ecosystems to global climate change: Towards an integrated approach. Science of the Total Environment, 404: 222–235
<https://doi.org/10.1016/j.scitotenv.2008.04.050>
33. , Ch., Rais, A., Menzel, A. 2009: Bayesian analysis of temperature sensitivity of plant phenology in Germany. Agricultural and Forest Meteorology, 149: 1699–1708.
<https://doi.org/10.1016/j.agrformet.2009.05.014>
34. , J.A., Paul, D.J. 2017: Assessing spatial and temporal patterns in land surface phenology for the Australian Alps (2000-2014). Remote Sensing of Environment, 199: 1–13.
<https://doi.org/10.1016/j.rse.2017.06.032>
35. Tolasz, R., Brázdil, R., Bulíř, O. et al. 2007: Climate Atlas of the Czechia. Český hydrometeorologický ústav, Univerzita Palackého, Praha, 256 pp.
36. , Y., Delzon, S., Dufręne, E., Pontailler, J.-Y., Louvet, M., Kremer, A., Michalet, R. 2009: Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agricultural and Forest Meteorology, 149: 735–744.
<https://doi.org/10.1016/j.agrformet.2008.10.019>
37. , Schneider, L., Rixen, Ch., Christen, D., Rebetez, M. 2018: Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 248: 60–69.
<https://doi.org/10.1016/j.agrformet.2017.09.005>
38. , J.W., Bevilacqua, E., Dovciak, M. 2017: Climate on the move: Implications of climate warming for species distributions in mountains of the northeastern United States. Agricultural and Forest Meteorology, 246: 272–280.
<https://doi.org/10.1016/j.agrformet.2017.05.019>
39. , Ch., Gonsamo, A., Chen, J.M. et al. 2012: Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: A North America flux data synthesis. Global and Planetary Change, 92−93: 179−190.
<https://doi.org/10.1016/j.gloplacha.2012.05.021>
40. , M., Russo, S., di Sabatino, S., Micchetti, M., Scoccimarro, E., Gualdi, S. 2016: Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Science of the Total Environment, 571: 1330–1339.
<https://doi.org/10.1016/j.scitotenv.2016.07.008>
