Beskydy 2017, 10, 75-86
https://doi.org/10.11118/beskyd201710010075
In situ data supporting remote sensing estimation of spruce forest parameters at the ecosystem station Bílý Kříž
References
1. 2015: Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sensing of Environment, 158: 15–27.
< , G.P., Martin, R.E., Anderson, C.B., Knapp, D.E. https://doi.org/10.1016/j.rse.2014.11.011>
2. 2015: An LUT-Based Inversion of DART Model to Estimate Forest LAI from Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 3147–3160.
< , Serbin, S.P., Wynne, R.H., Thomas, V.A., Falkowski, M.J., Kayastha, N, Gastellu-Etchegorry, J.-P., Townsend, P.A. https://doi.org/10.1109/JSTARS.2015.2401515>
3. 1996: Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80(2–4): 135–163.
< , J.M. https://doi.org/10.1016/0168-1923(95)02291-0>
4. 2004: Landsat’s role in ecological applications of remote sensing. BioScience, 54: 535–545.
< , W.B., Goward, S.N. https://doi.org/10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2>
5. 2006: Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates. Remote Sensing of Environment, 103: 408–418.
< , H.M., Eklundh, L., Kuusk, A., Nilson, T. https://doi.org/10.1016/j.rse.2006.04.005>
6. 2015: Discrete Anisotropic Radiative Transfer (DART 5) for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes. Remote Sensing, 7: 1667–1701.
< , J.-P., Yin, T., Lauret, N., Cajgfinger, T., Gregoire, T., Grau, E., Feret, J.-B., Lopes, M., et al. https://doi.org/10.3390/rs70201667>
7. 2014: Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description. Forests, 5(5): 1069–1105.
< , J., Morhart, C., Sheppard, J., Spiecker, H., Disney, M. https://doi.org/10.3390/f5051069>
8. Hanuš, J., Fabiánek, T., Fajmon, L. 2016: Potential of airborne imaging spectroscopy at CzechGlobe. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Scinces, XLI-B1: 15–17. https://doi.org/10.5194/isprs-archives-XLI-B1-15-2016.
<https://doi.org/10.5194/isprs-archives-XLI-B1-15-2016>
9. 2013: Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition, In ISPRS Journal of Photogrammetry and Remote Sensing, Volume 78: 1–14.
< , J., Rautiainen, M., Stenberg, P., Mőttus, M., Vesanto, V-H. https://doi.org/10.1016/j.isprsjprs.2013.01.001>
10. 2013: Measurement methods and variability assessment of the Norway spruce total leaf area: implications for remote sensing. Trees – Structure and functions, 27: 111–121.
< , L., Lukeš, P., Malenovský, Z., Lhotáková, Z., Kaplan, V., Hanuš, J. https://doi.org/10.1007/s00468-012-0774-8>
11. Homolová, L., Malenovský, Z., Hanuš, J., Tomášková, I., Dvořáková, M., Pokorný, R. 2007: Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy. ISPRS Archives – Volume XXXVI-7/C50: 499–504. Available online http://www.isprs.org/proceedings/XXXVI/7-C50/papers/P95.pdf
12. 2017: A spectral analysis of 25 boreal tree species. Silva Fennica, 51(4): 7753.
< , a., Raitio, P., Rautiainen, M. https://doi.org/10.14214/sf.7753>
13. 2009: PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment, 113: 56–66.
< , S., Verhoef, W., Baret, F., Bacour, C., Zarco-tejada, P.J., Asner, G.P., Francois, C., Ustin, S.L. https://doi.org/10.1016/j.rse.2008.01.026>
14. Janoutová, R. 2017: Modelling 3D forest structure for improved retrieval of forest biophysical properties. Brno University of Technology, Faculty of Mechanical Engineering, Brno. 100 pp.
15. 2009: Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment, 113: 78–91.
< , R.F., Asner, G.P., Ollinger, S.V., Martin, M.E., Wessman, C.A. https://doi.org/10.1016/j.rse.2008.10.018>
16. 2017: Comparison of different approaches of radiation use efficiency of biomass formation estimation in Mountain Norway spruce. Trees – Structure and Functions, 31(1): 325–337.
< , L., Marková, I., Havránková, K., Pokorný, R., Urban, O., Šigut, L., Pavelka, M., Cenciala, E., Marek, M.V. https://doi.org/10.1007/s00468-016-1486-2>
17. 2011: Inversion of a coupled canopy-atmosphere model using multi-angular top-of-atmosphere radiance data: A forest case study. Remote Sensing of Environment, 115: 2603–2612.
< , V.C.E., Verhoef, W., Clevers, J.G.P.W., Schaepman, M.E. https://doi.org/10.1016/j.rse.2011.05.016>
18. 2016: Understanding forest health by remote sensing Part I – A review of spectral traits, processes and remote sensing characteristics. Remote Sensing, 8: 1029.
< , A., Erasmi, S., King, D.J., Magdon, P., Heurich, M. https://doi.org/10.3390/rs8121029>
19. 2017: Understanding forest health by remote sensing Part II – A review of approaches and data models. Remote Sensing, 9: 129.
< , A., Erasmi, S., King, D.J., Magdon, P., Heurich, M. https://doi.org/10.3390/rs9020129>
20. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods in Enzymology, 148: 350–382.
< , H.K. https://doi.org/10.1016/0076-6879(87)48036-1>
21. 2013: Optical properties of elaves and needles for boreal tree species in Europe. Remote Sensing Letters, 4(7): 667–676.
< , P., Stenberg, P., Rautiainen, M., Mőttus, M., Vanhatalo, K.M. https://doi.org/10.1080/2150704X.2013.782112>
22. 2008: Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution. Remote Sensing of Environment, 112: 1–18.
< , Z., Martin, E., Homolová, L., Gastellu-Etchegorry, J-P., Zurita-Milla, R., Schaepman, M.E., Pokorný, R., Clevers, J.G.P.W., Cudlín, P. https://doi.org/10.1016/j.rse.2006.02.028>
23. 2006: Applicability of the PROSPECT model for Norway spruce needles. International Journal of Remote Sensing, 24: 5315–5340.
< , Z., Albrechtová, J., Lhotáková, Z., Zurita-Milla, R., Clevers, J.G.P.W., Schaepman, M.E., Cudlín, P. https://doi.org/10.1080/01431160600762990>
24. 2013. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sensing of Environment, 131: 85–102.
< , Z., Homolová, L., Zurita-Milla, R., Lukeš, P., Kaplan, V., Hanuš, J., Gastellu-Etchegorry, J.-P., Schaepman, M.E., https://doi.org/10.1016/j.rse.2012.12.015>
25. 2017: The 2013 FLEX—US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA. Remote Sensing, 9: 612.
< , E.M., Rascher, U., Corp, L.A., Huemmrich, K.F., Cook, B.D., Noormets, A., Schickling, A., Pinto, F., Alonso, L., et al. https://doi.org/10.3390/rs9060612>
26. 2010: A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25: 693–714.
< , Ü. https://doi.org/10.1007/s11284-010-0712-4>
27. 2015. Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan. Ecological Research, 29: 111.
< , H.M., Motohka, T., Murakami, K., Muraoka, H., Nasahara, K.N. https://doi.org/10.1007/s11284-013-1096-z>
28. 2016: In situ/remote sensing integration to assess forest health – a review. Remote Sensing, 8(6): 471.
< , M., Schweitzer, C., Rosenthal, M., Keuck, V., Bumberger, J., Dietrich, P., et al. https://doi.org/10.3390/rs8060471>
29. 2000: Test of accuracy of LAI estimation by LAI-2000 under artificially changed leaf to wood area proportions. Biologia Plantarum, 43(4): 537–544.
< , R., Marek, M.V. https://doi.org/10.1023/A:1002862611176>
30. 2012: Leaf area index of Norway spruce stands in relation to age and defoliation. Beskydy, 5(2): 173–180.
< , R., Stojnič, S. https://doi.org/10.11118/beskyd201205020173>
31. 1989: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem Biophys Acta, 975: 384–394.
, R.J., Thompson, W.A., Kriedemann, P.E.
32. 2004: The effect of crown shape on the reflectance of coniferous stands. Remote Sensing of Environment 89: 41–52.
< , M., Stenberg, P., Nilson, T., Kuusk, A. https://doi.org/10.1016/j.rse.2003.10.001>
33. 2010: Ecological application of physically based remote sensing methods. Scandinavian Journal of Forest Research, 25: 325–339.
< , M., Heiskanen, J., Eklundh, L., Mőttus, M., Lukeš, P., Stenberg, P. https://doi.org/10.1080/02827581.2010.497159>
34. 2002: Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction. International Journal of Remote Sensing, 23: 2631–2649.
< , R., Schläpfer, D. https://doi.org/10.1080/01431160110115834>
35. 2006: An assessment of needles clumping within shoots when modeling radiative transfer within homogeneous canopies. Remote Sensing of Environment, 102: 116–134.
< , N., Fernandes, R., Chelle, M. https://doi.org/10.1016/j.rse.2006.02.003>
36. 2015: Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophys. Res. Lett., 42: 1632–1639.
< , M., Nedbal, L., Guanter, L., Ač, A., Alonso, L., Burkart, A., Cogliati, S., Colombo, R., Damm, A., Drusch, M., Hanuš, J., Janoutová, R., et al. https://doi.org/10.1002/2014GL062943>
37. Schaepman, M.E. 2009: Imaging Spectrometers. In: Warner TA, Duane Nellis M, Foody GM (eds) The SAGE Handbook of Remote Sensing. SAGE, London (UK), pp. 166–178.
38. 2006: Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sensing of Environment, 100: 281–294.
< , M., Atzberger, C. https://doi.org/10.1016/j.rse.2005.10.006>
39. 2012: Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Functional Ecology, 26(1): 46–55.
< , O., Klem, K., Ač, A., Havránková, K., Holišová, P., Navrátil, M., et al. https://doi.org/10.1111/j.1365-2435.2011.01934.x>
40. 2007: Coupled soil-leaf-canopy and atmosphere radiative transfier modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sensing of Environment, 109: 166–182.
< , W., Bach, H. https://doi.org/10.1016/j.rse.2006.12.013>
41. 2014a: Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part i: Methodological review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2): 399–405.
< , L., Schaepman, M.E., Clevers, J.G.P.W., Malenovský, Z. https://doi.org/10.1109/JSTARS.2013.2272890>
42. 2014 b: Minimizing measurement uncertainties of coniferous needle-leaf optical properties. Part II: Experimental setup and error analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2): 406–420.
< , L., Malenovský, Z., Clevers, J.G.P.W., Schaepman, M.E. https://doi.org/10.1109/JSTARS.2013.2292817>