Beskydy 2017, 10, 75-86

https://doi.org/10.11118/beskyd201710010075

In situ data supporting remote sensing estimation of spruce forest parameters at the ecosystem station Bílý Kříž

Lucie Homolová, Růžena Janoutová, Petr Lukeš, Jan Hanuš, Jan Novotný, Olga Brovkina, Rolling Richard Loayza Fernandez

Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic

References

1. Asner, G.P., Martin, R.E., Anderson, C.B., Knapp, D.E. 2015: Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sensing of Environment, 158: 15–27. <https://doi.org/10.1016/j.rse.2014.11.011>
2. Banskota A, Serbin, S.P., Wynne, R.H., Thomas, V.A., Falkowski, M.J., Kayastha, N, Gastellu-Etchegorry, J.-P., Townsend, P.A. 2015: An LUT-Based Inversion of DART Model to Estimate Forest LAI from Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 3147–3160. <https://doi.org/10.1109/JSTARS.2015.2401515>
3. Chen, J.M. 1996: Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80(2–4): 135–163. <https://doi.org/10.1016/0168-1923(95)02291-0>
4. Cohen, W.B., Goward, S.N. 2004: Landsat’s role in ecological applications of remote sensing. BioScience, 54: 535–545. <https://doi.org/10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2>
5. Eriksson, H.M., Eklundh, L., Kuusk, A., Nilson, T. 2006: Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates. Remote Sensing of Environment, 103: 408–418. <https://doi.org/10.1016/j.rse.2006.04.005>
6. Gastellu-Etchegorry, J.-P., Yin, T., Lauret, N., Cajgfinger, T., Gregoire, T., Grau, E., Feret, J.-B., Lopes, M., et al. 2015: Discrete Anisotropic Radiative Transfer (DART 5) for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes. Remote Sensing, 7: 1667–1701. <https://doi.org/10.3390/rs70201667>
7. Hackenberg, J., Morhart, C., Sheppard, J., Spiecker, H., Disney, M. 2014: Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description. Forests, 5(5): 1069–1105. <https://doi.org/10.3390/f5051069>
8. Hanuš, J., Fabiánek, T., Fajmon, L. 2016: Potential of airborne imaging spectroscopy at CzechGlobe. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Scinces, XLI-B1: 15–17. https://doi.org/10.5194/isprs-archives-XLI-B1-15-2016. <https://doi.org/10.5194/isprs-archives-XLI-B1-15-2016>
9. Heiskanen, J., Rautiainen, M., Stenberg, P., Mőttus, M., Vesanto, V-H. 2013: Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition, In ISPRS Journal of Photogrammetry and Remote Sensing, Volume 78: 1–14. <https://doi.org/10.1016/j.isprsjprs.2013.01.001>
10. Homolová, L., Lukeš, P., Malenovský, Z., Lhotáková, Z., Kaplan, V., Hanuš, J. 2013: Measurement methods and variability assessment of the Norway spruce total leaf area: implications for remote sensing. Trees – Structure and functions, 27: 111–121. <https://doi.org/10.1007/s00468-012-0774-8>
11. Homolová, L., Malenovský, Z., Hanuš, J., Tomášková, I., Dvořáková, M., Pokorný, R. 2007: Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy. ISPRS Archives – Volume XXXVI-7/C50: 499–504. Available online http://www.isprs.org/proceedings/XXXVI/7-C50/papers/P95.pdf
12. Hovi, a., Raitio, P., Rautiainen, M. 2017: A spectral analysis of 25 boreal tree species. Silva Fennica, 51(4): 7753. <https://doi.org/10.14214/sf.7753>
13. Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-tejada, P.J., Asner, G.P., Francois, C., Ustin, S.L. 2009: PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment, 113: 56–66. <https://doi.org/10.1016/j.rse.2008.01.026>
14. Janoutová, R. 2017: Modelling 3D forest structure for improved retrieval of forest biophysical properties. Brno University of Technology, Faculty of Mechanical Engineering, Brno. 100 pp.
15. Kokaly, R.F., Asner, G.P., Ollinger, S.V., Martin, M.E., Wessman, C.A. 2009: Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment, 113: 78–91. <https://doi.org/10.1016/j.rse.2008.10.018>
16. Krupková, L., Marková, I., Havránková, K., Pokorný, R., Urban, O., Šigut, L., Pavelka, M., Cenciala, E., Marek, M.V. 2017: Comparison of different approaches of radiation use efficiency of biomass formation estimation in Mountain Norway spruce. Trees – Structure and Functions, 31(1): 325–337. <https://doi.org/10.1007/s00468-016-1486-2>
17. Laurent, V.C.E., Verhoef, W., Clevers, J.G.P.W., Schaepman, M.E. 2011: Inversion of a coupled canopy-atmosphere model using multi-angular top-of-atmosphere radiance data: A forest case study. Remote Sensing of Environment, 115: 2603–2612. <https://doi.org/10.1016/j.rse.2011.05.016>
18. Lausch, A., Erasmi, S., King, D.J., Magdon, P., Heurich, M. 2016: Understanding forest health by remote sensing Part I – A review of spectral traits, processes and remote sensing characteristics. Remote Sensing, 8: 1029. <https://doi.org/10.3390/rs8121029>
19. Lausch, A., Erasmi, S., King, D.J., Magdon, P., Heurich, M. 2017: Understanding forest health by remote sensing Part II – A review of approaches and data models. Remote Sensing, 9: 129. <https://doi.org/10.3390/rs9020129>
20. Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods in Enzymology, 148: 350–382. <https://doi.org/10.1016/0076-6879(87)48036-1>
21. Lukeš, P., Stenberg, P., Rautiainen, M., Mőttus, M., Vanhatalo, K.M. 2013: Optical properties of elaves and needles for boreal tree species in Europe. Remote Sensing Letters, 4(7): 667–676. <https://doi.org/10.1080/2150704X.2013.782112>
22. Malenovský, Z., Martin, E., Homolová, L., Gastellu-Etchegorry, J-P., Zurita-Milla, R., Schaepman, M.E., Pokorný, R., Clevers, J.G.P.W., Cudlín, P. 2008: Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution. Remote Sensing of Environment, 112: 1–18. <https://doi.org/10.1016/j.rse.2006.02.028>
23. Malenovský, Z., Albrechtová, J., Lhotáková, Z., Zurita-Milla, R., Clevers, J.G.P.W., Schaepman, M.E., Cudlín, P. 2006: Applicability of the PROSPECT model for Norway spruce needles. International Journal of Remote Sensing, 24: 5315–5340. <https://doi.org/10.1080/01431160600762990>
24. Malenovský, Z., Homolová, L., Zurita-Milla, R., Lukeš, P., Kaplan, V., Hanuš, J., Gastellu-Etchegorry, J.-P., Schaepman, M.E., 2013. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sensing of Environment, 131: 85–102. <https://doi.org/10.1016/j.rse.2012.12.015>
25. Middleton, E.M., Rascher, U., Corp, L.A., Huemmrich, K.F., Cook, B.D., Noormets, A., Schickling, A., Pinto, F., Alonso, L., et al. 2017: The 2013 FLEX—US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA. Remote Sensing, 9: 612. <https://doi.org/10.3390/rs9060612>
26. Niinemets, Ü. 2010: A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25: 693–714. <https://doi.org/10.1007/s11284-010-0712-4>
27. Noda, H.M., Motohka, T., Murakami, K., Muraoka, H., Nasahara, K.N. 2015. Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan. Ecological Research, 29: 111. <https://doi.org/10.1007/s11284-013-1096-z>
28. Pause, M., Schweitzer, C., Rosenthal, M., Keuck, V., Bumberger, J., Dietrich, P., et al. 2016: In situ/remote sensing integration to assess forest health – a review. Remote Sensing, 8(6): 471. <https://doi.org/10.3390/rs8060471>
29. Pokorný, R., Marek, M.V. 2000: Test of accuracy of LAI estimation by LAI-2000 under artificially changed leaf to wood area proportions. Biologia Plantarum, 43(4): 537–544. <https://doi.org/10.1023/A:1002862611176>
30. Pokorný, R., Stojnič, S. 2012: Leaf area index of Norway spruce stands in relation to age and defoliation. Beskydy, 5(2): 173–180. <https://doi.org/10.11118/beskyd201205020173>
31. Porra, R.J., Thompson, W.A., Kriedemann, P.E. 1989: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem Biophys Acta, 975: 384–394.
32. Rautiainen, M., Stenberg, P., Nilson, T., Kuusk, A. 2004: The effect of crown shape on the reflectance of coniferous stands. Remote Sensing of Environment 89: 41–52. <https://doi.org/10.1016/j.rse.2003.10.001>
33. Rautiainen, M., Heiskanen, J., Eklundh, L., Mőttus, M., Lukeš, P., Stenberg, P. 2010: Ecological application of physically based remote sensing methods. Scandinavian Journal of Forest Research, 25: 325–339. <https://doi.org/10.1080/02827581.2010.497159>
34. Richter, R., Schläpfer, D. 2002: Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction. International Journal of Remote Sensing, 23: 2631–2649. <https://doi.org/10.1080/01431160110115834>
35. Rochdi, N., Fernandes, R., Chelle, M. 2006: An assessment of needles clumping within shoots when modeling radiative transfer within homogeneous canopies. Remote Sensing of Environment, 102: 116–134. <https://doi.org/10.1016/j.rse.2006.02.003>
36. Rossini, M., Nedbal, L., Guanter, L., Ač, A., Alonso, L., Burkart, A., Cogliati, S., Colombo, R., Damm, A., Drusch, M., Hanuš, J., Janoutová, R., et al. 2015: Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophys. Res. Lett., 42: 1632–1639. <https://doi.org/10.1002/2014GL062943>
37. Schaepman, M.E. 2009: Imaging Spectrometers. In: Warner TA, Duane Nellis M, Foody GM (eds) The SAGE Handbook of Remote Sensing. SAGE, London (UK), pp. 166–178.
38. Schlerf, M., Atzberger, C. 2006: Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sensing of Environment, 100: 281–294. <https://doi.org/10.1016/j.rse.2005.10.006>
39. Urban, O., Klem, K., Ač, A., Havránková, K., Holišová, P., Navrátil, M., et al. 2012: Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Functional Ecology, 26(1): 46–55. <https://doi.org/10.1111/j.1365-2435.2011.01934.x>
40. Verhoef, W., Bach, H. 2007: Coupled soil-leaf-canopy and atmosphere radiative transfier modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sensing of Environment, 109: 166–182. <https://doi.org/10.1016/j.rse.2006.12.013>
41. Yanez-Rausell, L., Schaepman, M.E., Clevers, J.G.P.W., Malenovský, Z. 2014a: Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part i: Methodological review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2): 399–405. <https://doi.org/10.1109/JSTARS.2013.2272890>
42. Yanez-Rausell, L., Malenovský, Z., Clevers, J.G.P.W., Schaepman, M.E. 2014 b: Minimizing measurement uncertainties of coniferous needle-leaf optical properties. Part II: Experimental setup and error analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2): 406–420. <https://doi.org/10.1109/JSTARS.2013.2292817>
front cover

Current issue

ISSN 1803-2451 (Print)

ISSN 1805-9538 (Online)

Archive