Beskydy 2012, 5, 111-120
https://doi.org/10.11118/beskyd201205020111
Spline representation of irregular and malformed stem profiles of broadleaved tree species in White Carpathian Mountains
References
1. 1984: Taper equations for second-growth mixed conifers of Northern California. Forest Science, 30: 1103–1117.
, G. S.
2. 2008: Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management, 256: 147–151.
< , J. R., Jiang, L., Ozçelik, R. https://doi.org/10.1016/j.foreco.2008.04.018>
3. 1968: Development of a system of taper and volume tables for red alder. Forest Science, 14: 339–350.
, D., Curtis, R. O., Vancoevering, C.
4. 1972: Converting volume equations to compatible taper equations. Forest Science, 18: 241–245.
, J.P.
5. 1977: The whole-bole system: a conditioned dual-equation systém for precise prediction of tree profiles. Canadian Journal of Forest Research, 7 (3): 488–497.
< , J. P., Kozak, A. https://doi.org/10.1139/x77-063>
6. 2001: Stem volume models with random coefficients for Pinus kesiya in Tanzania, Zambia, and Zimbabwe. Canadian Journal of Forest Research, 31 (5): 879–888.
< , K. https://doi.org/10.1139/x01-019>
7. 1996: Number of diameters required to represent stem profiles using interpolated cubic splines. Canadian Journal of Forest Research, 26: 1113–1121.
< , A., Borders, B. E., Hitch, K.L. https://doi.org/10.1139/x26-124>
8. 1993: Variable-shape stem-profile predictions for western hemlock. Part I. Predictions from DBH and total height. Canadian Journal of Forest Research, 23: 520–536.
< , J. W., Raynes, L. M. https://doi.org/10.1139/x93-070>
9. 1979: Cubic spline curves and calculation of volume of sectionally measured trees. New Zealand Journal of Forest Science, 9: 89–99.
, C. J.
10. 1976: Polynomial taper equations that are compatible with tree volume equations. New Zealand Journal of Forest Science, 5: 313–322.
, C. J., Murray, J. C.
11. Gray, H.R. 1956: The form and taper of forest-tree stems. Imperial Forestry Institute Paper, 32. Oxford, University Press, 88 pp.
12. 1966: Tree form: Definition, interpolation, extrapolation. The Forestry Chronicle, 42 (4): 444–457.
< , L. R. https://doi.org/10.5558/tfc42444-4>
13. 2005: Compatible taper and volume equations for yellow-poplar in West Virginia. Forest Ecology and Management, 213: 399–409.
< , L., Brooks, J. R., Wang, J. https://doi.org/10.1016/j.foreco.2005.04.006>
14. 2008: Estimating the sample size for fitting taper equations. Journal of Forest Science, 54 (4):176–182.
< , K., Chatzilazarou, G. https://doi.org/10.17221/789-JFS>
15. Kochanek, D. H. U., Bartels, R. H. 1984: Interpolating splines with local tension, continuity, and bias control. SIGGRAPH Computers & Graphics 18: 33–41.
16. 2006: On the analysis of cubic smoothing spline-based stem curve prediction for forest harvesters. Canadian Journal of Forest Research, 36: 2909–2919.
< , L., Nummi, T., Wenzel, S., Kivinen V. P. https://doi.org/10.1139/x06-165>
17. Kuželka, K. 2011a: Stem curve modeling using spline functions. In: Bulletin of Szent István University, Gödöllő 2011, Hungary, (special issue). April 28th–29th, 2011, ISSN 1586-4502, p. 211.
18. Kuželka, K. 2011b: Stem curve modeling using spline functions. In: ICFFI News. International Centre of Forestry and Forest Industries, 1 (13): 70.
19. 2005: Modelling bark thickness of Picea abies with taper curves. Forest Ecology and Management, 206: 35–47.
< , J., Melkas, T., Aldén, S. https://doi.org/10.1016/j.foreco.2004.10.058>
20. 1979: On the construction of taper curves by using spline functions. Communicationes Instituti Forestalis Fenniae, 95 (8): 1–63.
, A, Laasasenaho, J.
21. 1988: On the construction of monotony preserving taper curves. Acta Forestalia Fennica, 203: 1–34.
, A.
22. 2003: Modeling stem profiles for Pinus densiflora in Korea. Forest Ecology and Management, 172: 69–77.
< , W. K., Seo, J. H., Sonm Y. M., Lee, K. H., von Gadow, K. https://doi.org/10.1016/S0378-1127(02)00139-1>
23. 2012: Regional stem taper equations for eleven conifer species in the Acadian Region of North America: Development and assessment. Northern Journal of Applied Forestry, 29: 5–14.
< , R., Weiskittel, A., Dick, A. R., Kershaw, J. A., and Seymour, R. S. https://doi.org/10.5849/njaf.10-037>
24. Linkeová, I. 2007: NURBS křivky. NeUniformní Racionální B-Spline křivky[NURBS curves: Non-Uniform Rational B-Spline curves]. Praha, Nakladatelství ČVUT, 208 s.
25. 1980: Log volume estimation with spline approximation. Forest Science, 26: 361–369.
< , C. J. https://doi.org/10.1093/forestscience/26.3.361>
26. 1949: The taper of coniferous species with special reference to Loblolly pine. The Forestry Chronicle, 25: 21–31.
< , L. https://doi.org/10.5558/tfc25021-1>
27. 1976: Segmented polynomial regression applied to taper equations. Forest Science, 22: 283–289.
, T. A., Burkhart, H. E.
28. 2004: Prediction of stem measurements of Scots pine. Journal of Applied Statistics, 31: 105–114.
< , T., Möttönen, J. https://doi.org/10.1080/0266476032000148975>
29. Piegl, L., Tiller, W. 1996: The NURBS Book. Springer-Verlag, Berlin, second edition, 646 pp.
30. 2009: Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis. Forest Science, 55 (3): 268–282.
, M., Parton, J.
31. 1983: Individuelle Baumschaftform und cubische Spline Interpolation [Individual stem form and cubic spline interpolation]. Allgemeine Forst und Jagdzeitung, 155: 193–197.
, T.
32. 1991: Simple, flexible, trigonometric taper equations. Canadian Journal of Forest Research, 21: 1132–1137.
< , C. E. and Parresol, B. R. https://doi.org/10.1139/x91-157>