Beskydy 2013, 6, 43-52
https://doi.org/10.11118/beskyd201306010043
Growth under elevated CO2 concentration affects the temperature response of photosynthetic rate
References
1. 2007: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment, 30: 258–270.
< , E.A., Rogers, A. https://doi.org/10.1111/j.1365-3040.2007.01641.x>
2. 2008: Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses. Physiologia Plantarum, 132: 102–112.
, A., Pérez, P., Morcuende, R., Martinez-Carrasco, R.
3. 2012: The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres. New Phytologist, 196: 448–461.
< , M., Wertin, T.M., Bauweraerts, I., McGuire, M.A., Teskey, R.O., Steppe, K. https://doi.org/10.1111/j.1469-8137.2012.04267.x>
4. 2005: CO2 enrichment predisposes foliage of a eucalypt to freezing injury and reduces spring growth. Plant, Cell and Environment, 28: 1506–1515.
, D.H., Loveys, B.R., Egerton, J.J.G., Gorton, H., Williams, W.E., Ball, M.C.
5. 2012: Effects of elevated atmospheric [CO2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna. Global Change Biology, 18: 585–595.
< , C.V.M., Duursma, R.A., Medlyn, B.E., Ellsworth, D.S., Eamus, D., Tissue, D.T., Adams, M.A., Conroy, J., Crous, K.Y., Liberloo, M., Löw, M., Linder, S., Mcmurtrie, R.E. https://doi.org/10.1111/j.1365-2486.2011.02526.x>
6. 2007: Elevated Atmospheric CO2 and Strain of Rhizobium Alter freezing tolerance and cold-induced molecular changes in Alfalfa (Medicago sativa). Annals of Botany, 99: 275–284.
< , A., Prévost, D., Bigras, F.J., Castonguay, Y. https://doi.org/10.1093/aob/mcl254>
7. 2006: Seasonal changes in temperature dependence of photosynthetic rate in rice under a free-air CO2 enrichment. Annals of Botany, 97: 549–557.
< , A., Hikosaka, K., Hirose, T., Hasegawa, T., Okada, M., Kobayashi, K. https://doi.org/10.1093/aob/mcl001>
8. Crawford, R.M.M., Wolfe, D.W. 1999: Temperature: Cellular to whole-plant and population responses. In: Luo, Y., Mooney H.A.: Carbon dioxide and environmental stress. Academic Press, California: 61–105.
9. 2013. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3: 203–207.
< , M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J., Zimmermann, N. E., https://doi.org/10.1038/nclimate1687>
10. 2006: Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 57: 291–302.
< , K., Ishikawa, K., Borjigidai, A., Muller, O., Onoda, Y. https://doi.org/10.1093/jxb/erj049>
11. IPCC, Climate Change, 2007. Mitigation, Contribution of Working Group III to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. In: Metz, B. Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds). Summary for Policymakers, Cambridge University Press, Cambridge.
12. 2009: Photosynthetic induction in broadleaved Fagus sylvatica and coniferous Picea abies cultivated under ambient and elevated CO2 concentrations. Plant Science, 177: 123–130.
< , M., Urban, O., Šprtová, M., Hrstka, M., Kalina, J., Tomášková, I., Špunda, V., Marek, M.V. https://doi.org/10.1016/j.plantsci.2009.04.005>
13. 1999: Responses of two provenances of Fagus sylvatica seedlings to a combination of four temperature and two CO2 treatments during their first growing season: gas exchange of leaves and roots. New Phytologist, 144: 437–454.
< , J.W., Bruhn, D., Saxe, H. https://doi.org/10.1046/j.1469-8137.1999.00541.x>
14. 2001: Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated CO2 and temperature. Plant, Cell and Environment, 24: 539–548.
< , J.D., Lucash, M., Olszyk, D., Tingey, D.T. https://doi.org/10.1046/j.1365-3040.2001.00700.x>
15. 2009: Seasonal response of photosynthetic electron transport and energy dissipation in the eight year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine). Tree Physiology, 29: 789–797.
< , B.A., Combs, A., Myers, K., Kent, R., Stanley, L., Tissue, D.T. https://doi.org/10.1093/treephys/tpp019>
16. 2006: Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312: 1918–1921.
< , S.P., Ainsworth, E.A., Leakey, A.D.B., Nöberger, J., Ort, D.R. https://doi.org/10.1126/science.1114722>
17. 2006: Higher daytime leaf temperatures contribute to lower freeze tolerance under elevated CO2. Plant, Cell and Environment, 29: 1077–1086.
< , B.R., Egerton, J.J.G., Ball, M.C. https://doi.org/10.1111/j.1365-3040.2005.01482.x>
18. 2011: Ecological lessons from free-air CO2 enrichment (FACE) experiments. The Annual Review of Ecology, Evolution, and Systematics, 42: 181–203.
< , R.J., Zak, D.R. https://doi.org/10.1146/annurev-ecolsys-102209-144647>
19. 2007: The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment, 30: 1086–1106.
< , R.F., Kubien, D.S. https://doi.org/10.1111/j.1365-3040.2007.01682.x>
20. 2005: Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell and Environment, 28: 269–277.
< , T.D. https://doi.org/10.1111/j.1365-3040.2005.01324.x>
21. 2005: Diurnal dynamics of photosynthetic parameters of Norway spruce trees cultivated under ambient and elevated CO2: the reasons of midday depression in CO2 assimilation. Plant Science, 168: 1371–1381.
< , V., Kalina, J., Urban, O., Luis, V. C., Sibisse, I., Puertolas, J., Šprtová, M., Marek, M. V. https://doi.org/10.1016/j.plantsci.2005.02.002>
22. 2000: Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant, Cell and Environment, 23: 649–656.
< , D.R., Seemann, J.R., Coleman, J.S. https://doi.org/10.1046/j.1365-3040.2000.00574.x>
23. 2012. Effect of season, needle age and elevated CO2 concentration on photosynthesis and Rubisco acclimation in Picea abies. Plant Physiology and Biochemistry, 58: 135–141.
< , Hrstka M., Zitová M., Holišová P., Šprtová M., Klem K., Calfapietra C., De Angelis P., Marek M.V., https://doi.org/10.1016/j.plaphy.2012.06.023>
24. 2001. Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosynthetica, 39: 395–401.
< , O., Janouš D., Pokorný R., Marková I., Pavelka M., Fojtík Z., Šprtová M., Kalina J., Marek M.V., https://doi.org/10.1023/A:1015134427592>
25. 2008: Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P.]. Plant, Cell and Environment, 31: 1250–1262.
< , D.A., Sage, R.F. https://doi.org/10.1111/j.1365-3040.2008.01842.x>
26. 1994: Optimal acclimation of the C3 photosynthetic system under enhanced CO2. Photosynthesis Research, 39: 401–412.
< , I.E. https://doi.org/10.1007/BF00014594>
27. 2005: Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant, Cell and Environment, 28: 536–547.
< , W., Noguchi, K.A Terashima, I. https://doi.org/10.1111/j.1365-3040.2004.01299.x>