Beskydy 2013, 6, 43-52

https://doi.org/10.11118/beskyd201306010043

Growth under elevated CO2 concentration affects the temperature response of photosynthetic rate

P. Holišová1,2, L. Šigut1, K. Klem1, O. Urban1

1Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 986 / 4a, CZ-603 00 Brno, Czech Republic
2Mendel University in Brno, Department of Forest Ecology, Zemědělská 3, CZ-61300 Brno, Czech Republic

References

1. Ainsworth, E.A., Rogers, A. 2007: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment, 30: 258–270. <https://doi.org/10.1111/j.1365-3040.2007.01641.x>
2. Alonso, A., Pérez, P., Morcuende, R., Martinez-Carrasco, R. 2008: Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses. Physiologia Plantarum, 132: 102–112.
3. Ameye, M., Wertin, T.M., Bauweraerts, I., McGuire, M.A., Teskey, R.O., Steppe, K. 2012: The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres. New Phytologist, 196: 448–461. <https://doi.org/10.1111/j.1469-8137.2012.04267.x>
4. Barker, D.H., Loveys, B.R., Egerton, J.J.G., Gorton, H., Williams, W.E., Ball, M.C. 2005: CO2 enrichment predisposes foliage of a eucalypt to freezing injury and reduces spring growth. Plant, Cell and Environment, 28: 1506–1515.
5. Barton, C.V.M., Duursma, R.A., Medlyn, B.E., Ellsworth, D.S., Eamus, D., Tissue, D.T., Adams, M.A., Conroy, J., Crous, K.Y., Liberloo, M., Löw, M., Linder, S., Mcmurtrie, R.E. 2012: Effects of elevated atmospheric [CO2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna. Global Change Biology, 18: 585–595. <https://doi.org/10.1111/j.1365-2486.2011.02526.x>
6. Bertrand, A., Prévost, D., Bigras, F.J., Castonguay, Y. 2007: Elevated Atmospheric CO2 and Strain of Rhizobium Alter freezing tolerance and cold-induced molecular changes in Alfalfa (Medicago sativa). Annals of Botany, 99: 275–284. <https://doi.org/10.1093/aob/mcl254>
7. Borjigidai, A., Hikosaka, K., Hirose, T., Hasegawa, T., Okada, M., Kobayashi, K. 2006: Seasonal changes in temperature dependence of photosynthetic rate in rice under a free-air CO2 enrichment. Annals of Botany, 97: 549–557. <https://doi.org/10.1093/aob/mcl001>
8. Crawford, R.M.M., Wolfe, D.W. 1999: Temperature: Cellular to whole-plant and population responses. In: Luo, Y., Mooney H.A.: Carbon dioxide and environmental stress. Academic Press, California: 61–105.
9. Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J., Zimmermann, N. E., 2013. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3: 203–207. <https://doi.org/10.1038/nclimate1687>
10. Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O., Onoda, Y. 2006: Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 57: 291–302. <https://doi.org/10.1093/jxb/erj049>
11. IPCC, Climate Change, 2007. Mitigation, Contribution of Working Group III to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. In: Metz, B. Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds). Summary for Policymakers, Cambridge University Press, Cambridge.
12. Košvancová, M., Urban, O., Šprtová, M., Hrstka, M., Kalina, J., Tomášková, I., Špunda, V., Marek, M.V. 2009: Photosynthetic induction in broadleaved Fagus sylvatica and coniferous Picea abies cultivated under ambient and elevated CO2 concentrations. Plant Science, 177: 123–130. <https://doi.org/10.1016/j.plantsci.2009.04.005>
13. Leverenz, J.W., Bruhn, D., Saxe, H. 1999: Responses of two provenances of Fagus sylvatica seedlings to a combination of four temperature and two CO2 treatments during their first growing season: gas exchange of leaves and roots. New Phytologist, 144: 437–454. <https://doi.org/10.1046/j.1469-8137.1999.00541.x>
14. Lewis, J.D., Lucash, M., Olszyk, D., Tingey, D.T. 2001: Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated CO2 and temperature. Plant, Cell and Environment, 24: 539–548. <https://doi.org/10.1046/j.1365-3040.2001.00700.x>
15. Logan, B.A., Combs, A., Myers, K., Kent, R., Stanley, L., Tissue, D.T. 2009: Seasonal response of photosynthetic electron transport and energy dissipation in the eight year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine). Tree Physiology, 29: 789–797. <https://doi.org/10.1093/treephys/tpp019>
16. Long, S.P., Ainsworth, E.A., Leakey, A.D.B., Nöberger, J., Ort, D.R. 2006: Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312: 1918–1921. <https://doi.org/10.1126/science.1114722>
17. Loveys, B.R., Egerton, J.J.G., Ball, M.C. 2006: Higher daytime leaf temperatures contribute to lower freeze tolerance under elevated CO2. Plant, Cell and Environment, 29: 1077–1086. <https://doi.org/10.1111/j.1365-3040.2005.01482.x>
18. Norby, R.J., Zak, D.R. 2011: Ecological lessons from free-air CO2 enrichment (FACE) experiments. The Annual Review of Ecology, Evolution, and Systematics, 42: 181–203. <https://doi.org/10.1146/annurev-ecolsys-102209-144647>
19. Sage, R.F., Kubien, D.S. 2007: The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment, 30: 1086–1106. <https://doi.org/10.1111/j.1365-3040.2007.01682.x>
20. Sharkey, T.D. 2005: Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell and Environment, 28: 269–277. <https://doi.org/10.1111/j.1365-3040.2005.01324.x>
21. Špunda, V., Kalina, J., Urban, O., Luis, V. C., Sibisse, I., Puertolas, J., Šprtová, M., Marek, M. V. 2005: Diurnal dynamics of photosynthetic parameters of Norway spruce trees cultivated under ambient and elevated CO2: the reasons of midday depression in CO2 assimilation. Plant Science, 168: 1371–1381. <https://doi.org/10.1016/j.plantsci.2005.02.002>
22. Taub, D.R., Seemann, J.R., Coleman, J.S. 2000: Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant, Cell and Environment, 23: 649–656. <https://doi.org/10.1046/j.1365-3040.2000.00574.x>
23. Urban O., Hrstka M., Zitová M., Holišová P., Šprtová M., Klem K., Calfapietra C., De Angelis P., Marek M.V., 2012. Effect of season, needle age and elevated CO2 concentration on photosynthesis and Rubisco acclimation in Picea abies. Plant Physiology and Biochemistry, 58: 135–141. <https://doi.org/10.1016/j.plaphy.2012.06.023>
24. Urban, O., Janouš D., Pokorný R., Marková I., Pavelka M., Fojtík Z., Šprtová M., Kalina J., Marek M.V., 2001. Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosynthetica, 39: 395–401. <https://doi.org/10.1023/A:1015134427592>
25. Way, D.A., Sage, R.F. 2008: Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P.]. Plant, Cell and Environment, 31: 1250–1262. <https://doi.org/10.1111/j.1365-3040.2008.01842.x>
26. Woodrow, I.E. 1994: Optimal acclimation of the C3 photosynthetic system under enhanced CO2. Photosynthesis Research, 39: 401–412. <https://doi.org/10.1007/BF00014594>
27. Yamori, W., Noguchi, K.A Terashima, I. 2005: Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant, Cell and Environment, 28: 536–547. <https://doi.org/10.1111/j.1365-3040.2004.01299.x>
front cover

Current issue

ISSN 1803-2451 (Print)

ISSN 1805-9538 (Online)

Archive