Beskydy 2014, 7, 9-20
https://doi.org/10.11118/beskyd201407010009
The biological activity of soil in Norway spruce forests and in fern Athyrium distentifolium Tausch ex Opiz stands on deforested polluted sites in the Beskydy Mts.
References
1. 2000: Enzyme activities in a limed agricultural soil. Biology and Fertility of Soils, 31: 85–91.
< , V., Tabatabai, M.A. https://doi.org/10.1007/s003740050628>
2. 1997: Spatial distribution of soil phosphatase activity within a riparian forest. Soil Science, 162: 808–825.
< , J.A., Glucksman, A.M., Lyons, J.B., Gorres, J.H. https://doi.org/10.1097/00010694-199711000-00005>
3. 2001: Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Applied Soil Ecology, 18: 255–270.
< , M.A., Colaneri, A.C. https://doi.org/10.1016/S0929-1393(01)00161-5>
4. 1999: The impact of a low humus level in arable soils on microbial properties, soil organic matter quality and crop yield. Biology and Fertility of Soils, 28: 156–161.
< , L., Sieling, K., Pingpank, K. https://doi.org/10.1007/s003740050478>
5. 1991: Spatial variability of phosphatase, urease, protease, organic carbon and total nitrogen in soil. Soil Biology and Biochemistry, 23: 391–396.
< , M., Ceccanti, B., Nannipieri, P. https://doi.org/10.1016/0038-0717(91)90196-Q>
6. 1985: Degradation of clay enzyme comlexes by soil microorganisms. Zentralblatt Mikrobiol, 104: 471–474.
< , P.K., Tarafdar, J.C. https://doi.org/10.1016/S0232-4393(85)80053-6>
7. 2004: Arylamidase and amidohydrolases in soils as affected by liming and tillage systems. Soil and Tillage Research, 77: 157–168.
< , M., Tabatabai, M.A. https://doi.org/10.1016/j.still.2003.12.007>
8. 2003: Use of a gradient of N-deposition to calculate effect-related soil and vegetation measures in deciduous forests. Forest Ecology and Management, Elsevier, 180: 113–124.
< , U., Diekmann, M. https://doi.org/10.1016/S0378-1127(02)00605-9>
9. 1998: The role of grass ecosystems of deforested areas in the region affected by air pollution (the Beskydy Mts., the Czech Republic). Ekológia, (Bratislava), 17: 241–255.
, K., Tůma I., Jakrlová J., Ježíková M., Sedláková I.,t Holub P.
10. 2005: The role of Calamagrostis communities in preventing soil acidification and base cations losses in a deforested mountain area affected by acid deposition. Plant Soil, 268: 35–49.
< K., Tůma I., Holub P., Jandák J. https://doi.org/10.1007/s11104-004-0185-8>
11. 2007: Porosty trav na odlesněných plochách – nežádoucí buřeň? [Stands of grasses on deforested areas - unwanted weeds?] Živa, 5: 203–205.
K., Tůma I., Holub P.
12. 2011: Ecological analysis of herbage layer of disturbed spruce stands in the National Nature Reserve Kněhyně-Čertův mlýn in the Beskydy Mts. Ekológia, 3: 381–395.
< , K., Tůma, I., Holub, P., Záhora, J. https://doi.org/10.4149/ekol_2011_03_381>
13. 1990: Bedeutung von pH Wert, Corg. Gehalt, Kultur, Substrat und Jahreseinfluss für bodenmikrobiologische Eigenschaften in einheitlich genutzten Ackerboden. Verband Deutscher Landwirtschaftlicher Untersuchungs und Forschungsanstalten, 30: 467–472.
, P., Schroder, D.
14. 1999: The fern understory as an ecological filter: growth and survival of canopy-tree seedlings. Ecology, 80(3): 846–856.
< L.O., Bazzaz F.A. https://doi.org/10.1890/0012-9658(1999)080[0846:TFUAAE]2.0.CO;2>
15. 1998: Rhizospheric processes influencing the biogeochemistry of forest ecosystems. Biogeochemistry, 42: 107–120.
< , G. R., Clegg, S., Courchesne, F. https://doi.org/10.1023/A:1005967203053>
16. 1996: Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5: 29–56.
< , S.J., Vaughan, D., Jones, D. https://doi.org/10.1016/S0929-1393(96)00126-6>
17. 2004: N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164: 243–266.
< , S. https://doi.org/10.1111/j.1469-8137.2004.01192.x>
18. 1988: Effect of lime and phosphate additions on changes in enzyme activities, microbial biomass and levels of extractable nitrogen, sulphur and phosphorus in acid soil. Biology and Fertility of Soils, 6: 153–158.
< , R.J., Swift, R.S. https://doi.org/10.1007/BF00257666>
19. 2010: The effect of enhanced nitrogen on aboveground biomass allocation and nutrient resorption in the fern Athyrium distentifolium. Plant Ecology, 207: 373–380.
< , P.,Tůma, I. https://doi.org/10.1007/s11258-009-9681-5>
20. Horáková, D., Němec, M., Szostková, M. 2007: Laboratorní cvičení z fyziologie bakterií [Laboratory exercises of physiology of bacteria]. Brno. Masarykova univerzita v Brně. Přírodovědecká fakulta. Skripta: 39–43.
21. 1983: Interference by weeds and deer with Allegheny hardwood reproduction. Canadian Journal of Forest Research, 13: 61–69.
< , S.B., Marquis, D.A. https://doi.org/10.1139/x83-009>
22. ISO/DIS 16072: 2002. Soil quality. Laboratory methods for determination of microbial soil respiration.
23. Kennedy, A.C. 1998: The rhizosphere and spermatosphere. In: Fuhrmann J. J. et al., eds. Principles and applications of soil microbiology. DM Sylvia, Prentice Hall Inc, Upper Saddle River: 389–409.
24. 1991: Acidifikace a vápnění lesních půd v Beskydech [Acidification and and liming of forest soils in the Beskydy Mts.]. Lesnictví, 37: 61–68.
, E., Vavříček. D.
25. 1994: Efeito das caractericas quimicas dos solos sobre os microorganismos solubilizatores de fosfato e produtores de fosfatases. Revista Brasileira de Ciencia de Solo, 18: 49–53.
, E. Centurion, J.F., Assis, L.C.
26. 1994: Sapling growth as a function of resources in a north temperate forest. Canadian Journal of Forest Research, 24: 2172–2183.
< , S.W., Canham, C.D., Silander, J.A., Jr., Kobe, R.K. https://doi.org/10.1139/x94-280>
27. 1987: Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19: 59–164.
< , D.S., Brookes, P.,Christensen, B.T. https://doi.org/10.1016/0038-0717(87)90076-9>
28. 2006: Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration. Pedobiologia, 50: 413–425.
< , F., Ghollarata, M. https://doi.org/10.1016/j.pedobi.2006.08.001>
29. Rejšek, K. 1991: Vliv antropogenní zátěže lesní půdy na změny aktivity kyselé fosfomonoesterázy [The influence of anthropogenic impact of forest land to changes in activity of acid fosfomonoesterase]. Brno. VŠZ v Brně. Doctoral thesis, 160 pp.
30. Speir, T.W., Ross, D.J. 1978: Soil phosphatases and sulphatases. In: Burns, R. G., ed. Soil Enzymes. New York: Academic Press: 197-249.
31. Szostková, M., Záhora, J. 2007: Microbial nitrogen transformation in soil covered with Athyrium distentifolium in deforested mountain area. In: Kosalec, I. Power of microbes in industry and environment. Book of abstracts. Zagreb, Chorvatsko: Pressum d.o.o.: 139 pp.
32. 1993: Respirace půdy jako její biologické aktivity. Respiration soil as its biological activity. Rostlinná výroba, 39: 769–778.
, H.
33. Šarapatka, B. 2003: Phosphatase activities (ACP, ALP) in agroecosystem soils. Uppsala. Swedish University of Agricultural Sciences, Uppsala. Department of Ecology and Crop Production Science. Acta Universitatis Agriculturae Sueciae. Agraria. Doctoral thesis: 396 pp.
34. 1969: Use of p-nitrophenol phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1: 301–307.
< , M.A., Bremner, J.M. https://doi.org/10.1016/0038-0717(69)90012-1>
35. 1980: Variation in microobial activity in histosols and its relationship to soil moissture. Applied and Environmental Microbiology, 40: 313–317.
, R. L. et Terry, R. E.
36. Trávníčková, E. 2009: Využití půdních mikroorganizmů v biomonitoringu – nové poznatky a přístupy. [Utilisation of soil microorganisms in biomonitoring – new knowledge and approaches]. Masarykova univerzita v Brně. Přírodovědecká fakulta. Recetox. Výzkumné centrum pro chemii životního prostředí a ekotoxikologii,
37. 2012: The role of Athyrium distentifolium in reduction of soil acidification and base cation losses due to acid deposition in a deforested mountain area. Plant Soil, 354: 107–120. ISSN 0032-079X.
< I., Fiala K., Záhora J., Holub P. https://doi.org/10.1007/s11104-011-1048-8>
38. 2012: Vegetative reproduction of Picea abies by artificial layering at the ecotone of the alpine timberline in the Giant (Krkonoše) Mountains, Czech Republic. Forest Ecology and Management, 263: 199–207.
< S., Hejcmanová P., Hejcman M. https://doi.org/10.1016/j.foreco.2011.09.037>