Beskydy 2014, 7, 9-20

https://doi.org/10.11118/beskyd201407010009

The biological activity of soil in Norway spruce forests and in fern Athyrium distentifolium Tausch ex Opiz stands on deforested polluted sites in the Beskydy Mts.

I. Tůma, D. Tůmová, J. Záhora

Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic

References

1. Acosta-Martínez, V., Tabatabai, M.A. 2000: Enzyme activities in a limed agricultural soil. Biology and Fertility of Soils, 31: 85–91. <https://doi.org/10.1007/s003740050628>
2. Amador, J.A., Glucksman, A.M., Lyons, J.B., Gorres, J.H. 1997: Spatial distribution of soil phosphatase activity within a riparian forest. Soil Science, 162: 808–825. <https://doi.org/10.1097/00010694-199711000-00005>
3. Aon, M.A., Colaneri, A.C. 2001: Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Applied Soil Ecology, 18: 255–270. <https://doi.org/10.1016/S0929-1393(01)00161-5>
4. Beyer, L., Sieling, K., Pingpank, K. 1999: The impact of a low humus level in arable soils on microbial properties, soil organic matter quality and crop yield. Biology and Fertility of Soils, 28: 156–161. <https://doi.org/10.1007/s003740050478>
5. Bonmati, M., Ceccanti, B., Nannipieri, P. 1991: Spatial variability of phosphatase, urease, protease, organic carbon and total nitrogen in soil. Soil Biology and Biochemistry, 23: 391–396. <https://doi.org/10.1016/0038-0717(91)90196-Q>
6. Chhonkar, P.K., Tarafdar, J.C. 1985: Degradation of clay enzyme comlexes by soil microorganisms. Zentralblatt Mikrobiol, 104: 471–474. <https://doi.org/10.1016/S0232-4393(85)80053-6>
7. Ekenler, M., Tabatabai, M.A. 2004: Arylamidase and amidohydrolases in soils as affected by liming and tillage systems. Soil and Tillage Research, 77: 157–168. <https://doi.org/10.1016/j.still.2003.12.007>
8. Falkengren-Grerup, U., Diekmann, M. 2003: Use of a gradient of N-deposition to calculate effect-related soil and vegetation measures in deciduous forests. Forest Ecology and Management, Elsevier, 180: 113–124. <https://doi.org/10.1016/S0378-1127(02)00605-9>
9. Fiala, K., Tůma I., Jakrlová J., Ježíková M., Sedláková I.,t Holub P. 1998: The role of grass ecosystems of deforested areas in the region affected by air pollution (the Beskydy Mts., the Czech Republic). Ekológia, (Bratislava), 17: 241–255.
10. Fiala K., Tůma I., Holub P., Jandák J. 2005: The role of Calamagrostis communities in preventing soil acidification and base cations losses in a deforested mountain area affected by acid deposition. Plant Soil, 268: 35–49. <https://doi.org/10.1007/s11104-004-0185-8>
11. Fiala K., Tůma I., Holub P. 2007: Porosty trav na odlesněných plochách – nežádoucí buřeň? [Stands of grasses on deforested areas - unwanted weeds?] Živa, 5: 203–205.
12. Fiala, K., Tůma, I., Holub, P., Záhora, J. 2011: Ecological analysis of herbage layer of disturbed spruce stands in the National Nature Reserve Kněhyně-Čertův mlýn in the Beskydy Mts. Ekológia, 3: 381–395. <https://doi.org/10.4149/ekol_2011_03_381>
13. Gehlen, P., Schroder, D. 1990: Bedeutung von pH Wert, Corg. Gehalt, Kultur, Substrat und Jahreseinfluss für bodenmikrobiologische Eigenschaften in einheitlich genutzten Ackerboden. Verband Deutscher Landwirtschaftlicher Untersuchungs und Forschungsanstalten, 30: 467–472.
14. George L.O., Bazzaz F.A. 1999: The fern understory as an ecological filter: growth and survival of canopy-tree seedlings. Ecology, 80(3): 846–856. <https://doi.org/10.1890/0012-9658(1999)080[0846:TFUAAE]2.0.CO;2>
15. Gobran, G. R., Clegg, S., Courchesne, F. 1998: Rhizospheric processes influencing the biogeochemistry of forest ecosystems. Biogeochemistry, 42: 107–120. <https://doi.org/10.1023/A:1005967203053>
16. Grayston, S.J., Vaughan, D., Jones, D. 1996: Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5: 29–56. <https://doi.org/10.1016/S0929-1393(96)00126-6>
17. Güsewell, S. 2004: N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164: 243–266. <https://doi.org/10.1111/j.1469-8137.2004.01192.x>
18. Haynes, R.J., Swift, R.S. 1988: Effect of lime and phosphate additions on changes in enzyme activities, microbial biomass and levels of extractable nitrogen, sulphur and phosphorus in acid soil. Biology and Fertility of Soils, 6: 153–158. <https://doi.org/10.1007/BF00257666>
19. Holub, P.,Tůma, I. 2010: The effect of enhanced nitrogen on aboveground biomass allocation and nutrient resorption in the fern Athyrium distentifolium. Plant Ecology, 207: 373–380. <https://doi.org/10.1007/s11258-009-9681-5>
20. Horáková, D., Němec, M., Szostková, M. 2007: Laboratorní cvičení z fyziologie bakterií [Laboratory exercises of physiology of bacteria]. Brno. Masarykova univerzita v Brně. Přírodovědecká fakulta. Skripta: 39–43.
21. Horsley, S.B., Marquis, D.A. 1983: Interference by weeds and deer with Allegheny hardwood reproduction. Canadian Journal of Forest Research, 13: 61–69. <https://doi.org/10.1139/x83-009>
22. ISO/DIS 16072: 2002. Soil quality. Laboratory methods for determination of microbial soil respiration.
23. Kennedy, A.C. 1998: The rhizosphere and spermatosphere. In: Fuhrmann J. J. et al., eds. Principles and applications of soil microbiology. DM Sylvia, Prentice Hall Inc, Upper Saddle River: 389–409.
24. Klimo, E., Vavříček. D. 1991: Acidifikace a vápnění lesních půd v Beskydech [Acidification and and liming of forest soils in the Beskydy Mts.]. Lesnictví, 37: 61–68.
25. Nahas, E. Centurion, J.F., Assis, L.C. 1994: Efeito das caractericas quimicas dos solos sobre os microorganismos solubilizatores de fosfato e produtores de fosfatases. Revista Brasileira de Ciencia de Solo, 18: 49–53.
26. Pacala, S.W., Canham, C.D., Silander, J.A., Jr., Kobe, R.K. 1994: Sapling growth as a function of resources in a north temperate forest. Canadian Journal of Forest Research, 24: 2172–2183. <https://doi.org/10.1139/x94-280>
27. Powlson, D.S., Brookes, P.,Christensen, B.T. 1987: Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19: 59–164. <https://doi.org/10.1016/0038-0717(87)90076-9>
28. Raiesi, F., Ghollarata, M. 2006: Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration. Pedobiologia, 50: 413–425. <https://doi.org/10.1016/j.pedobi.2006.08.001>
29. Rejšek, K. 1991: Vliv antropogenní zátěže lesní půdy na změny aktivity kyselé fosfomonoesterázy [The influence of anthropogenic impact of forest land to changes in activity of acid fosfomonoesterase]. Brno. VŠZ v Brně. Doctoral thesis, 160 pp.
30. Speir, T.W., Ross, D.J. 1978: Soil phosphatases and sulphatases. In: Burns, R. G., ed. Soil Enzymes. New York: Academic Press: 197-249.
31. Szostková, M., Záhora, J. 2007: Microbial nitrogen transformation in soil covered with Athyrium distentifolium in deforested mountain area. In: Kosalec, I. Power of microbes in industry and environment. Book of abstracts. Zagreb, Chorvatsko: Pressum d.o.o.: 139 pp.
32. Šantrůčková, H. 1993: Respirace půdy jako její biologické aktivity. Respiration soil as its biological activity. Rostlinná výroba, 39: 769–778.
33. Šarapatka, B. 2003: Phosphatase activities (ACP, ALP) in agroecosystem soils. Uppsala. Swedish University of Agricultural Sciences, Uppsala. Department of Ecology and Crop Production Science. Acta Universitatis Agriculturae Sueciae. Agraria. Doctoral thesis: 396 pp.
34. Tabatabai, M.A., Bremner, J.M. 1969: Use of p-nitrophenol phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1: 301–307. <https://doi.org/10.1016/0038-0717(69)90012-1>
35. Tate, R. L. et Terry, R. E. 1980: Variation in microobial activity in histosols and its relationship to soil moissture. Applied and Environmental Microbiology, 40: 313–317.
36. Trávníčková, E. 2009: Využití půdních mikroorganizmů v biomonitoringu – nové poznatky a přístupy. [Utilisation of soil microorganisms in biomonitoring – new knowledge and approaches]. Masarykova univerzita v Brně. Přírodovědecká fakulta. Recetox. Výzkumné centrum pro chemii životního prostředí a ekotoxikologii,
37. Tůma I., Fiala K., Záhora J., Holub P. 2012: The role of Athyrium distentifolium in reduction of soil acidification and base cation losses due to acid deposition in a deforested mountain area. Plant Soil, 354: 107–120. ISSN 0032-079X. <https://doi.org/10.1007/s11104-011-1048-8>
38. Vacek S., Hejcmanová P., Hejcman M. 2012: Vegetative reproduction of Picea abies by artificial layering at the ecotone of the alpine timberline in the Giant (Krkonoše) Mountains, Czech Republic. Forest Ecology and Management, 263: 199–207. <https://doi.org/10.1016/j.foreco.2011.09.037>
front cover

Current issue

ISSN 1803-2451 (Print)

ISSN 1805-9538 (Online)

Archive