Beskydy 2015, 8, 35-46
https://doi.org/10.11118/beskyd201508010035
Aboveground biomass estimation with airborne hyperspectral and LiDAR data in Tesinske Beskydy Mountains
References
1. 2008: Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest. Remote Sensing of Environment, 112 (4): 1856–1870.
< , J., Plourde, L.C., Martin, M.E., Braswell, B.H., Smith, M.I., Dubayah, R.O., et al. https://doi.org/10.1016/j.rse.2007.09.009>
2. 1992: Volume quantification of coniferous forest compartments using spectral radiance recorded by Landsat Thematic Mapper. International Journal of Remote Sensing, 13(9): 1779–1786.
< , J. https://doi.org/10.1080/01431169208904227>
3. 2005: Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods. International Journal of Remote Sensing, 26 (24): 5453–5465.
< , H., Schlerf M., Hill J. https://doi.org/10.1080/01431160500285076>
4. 2011: Forest structure and aboveground biomass in the south-western United States from MODIS and MISR. Remote Sensing of Environment, 115: 2943–2953.
< , M., Schaaf, C.B., Zhao, F., Wang, Z., Nolin, A.W., Moisen G.G. et al. https://doi.org/10.1016/j.rse.2010.08.031>
5. Dudeni, N., Debba, P., Cho, M., Mathieu, R. 2009: Spectral band discrimination for species observed from hyperspectral remote sensing. Proceedings Workshop IEEE on Hyperspectral Image and Signal Processing WHISPERS, 26–28 August, Grenoble, France.
6. 2014: Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154: 102–114.
< , F.E., Hartig, F., Latifi, H., Berger, C., Hernandez, J., Corvalan, P., Koch, B. https://doi.org/10.1016/j.rse.2014.07.028>
7. 2000: Interannual variability of global terrestrial primary production: Results of a model driven with satellite observations. Journal of Geographic Research, 105: 20077–20091.
, S.J., Prince, S.D., Small, J., Gleason, A.C.R.
8. Grodzki, W. 2006: Threats to the mountain Norway spruce stands in the Carpathians from the insect pests. Current Problems of Forest Protection in Spruce Stands under Conversion; Grodzki, W., Oszako, T., Eds.; IBL, Forest Research Institute (FRI): Warsaw, Poland, pp. 71–78.
9. 2011: Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 152–160.
, J., Koch. B.
10. 2008: Estimating foliar biochemistry from hyperspectral data in mixed forest canopy. Forest Ecology and Management, 256 (3): 491–501.
< , S., Kneubuhler, M., Psomas, A., Itten, K., Zimmermann, N.E. https://doi.org/10.1016/j.foreco.2008.05.011>
11. Kankare, V., Vastaranta, M., Holopainen, M., Raty, M., Yu, X., Hyyppa, J., Hyyppa, H., Alho, P., Viitala, R. 2013: Retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sensing, 5: 2257–2274; doi:10.3390/rs5052257
<https://doi.org/10.3390/rs5052257>
12. Kellndorfer, J.M., Walker, W.S., Lspoint, E., Kirsch, K., Bishop, J., Fiske, G. 2010: Statistical fusion of LiDAR, InSAR and optical remote sensing data for forest stand height characterization: A regional-scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets. J. Geophys. Res. 115, doi: 10.1029/2009JG000997
<https://doi.org/10.1029/2009JG000997>
13. 2010: Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 65: 581–590.
< , B. https://doi.org/10.1016/j.isprsjprs.2010.09.001>
14. 1996: Przestrzenny model degradacji lasów Beskidu Śląskiego. Biuletyn KPZK, 174: 511–538.
, J.
15. 2006: A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. Forest Ecology and Management, 226: 129–144.
< , S., Fournier, R. A., Luther, J.E., Piercey, D. https://doi.org/10.1016/j.foreco.2006.01.030>
16. 2010: Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry, 83: 395–407.
< , H., Nothdurft, A., Koch, B. https://doi.org/10.1093/forestry/cpq022>
17. 2012: Forest structure modelling with combined airborne hyperspectral and LiDAR data. Remote Sensing of Environment, 121: 10–25.
< , H., Fanssnacht, F., Koch, B. https://doi.org/10.1016/j.rse.2012.01.015>
18. 2014: Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 89: 49–58.
< , G.V., Chen, QI, Lindsell, J.A., Coomes, D.A., Del Frate, F., Guerriero, L., Pirotti, F., Valentini, R. https://doi.org/10.1016/j.isprsjprs.2014.01.001>
19. 2005: Automated tree recofnition in old growth conifer stands with high resolution digital imagery. Remote Sensing of Environment, 94: 311–326.
< , D.G., Gougeon, F.A., Tinis, S., Nelson, T., Burnett, C.N., Paradine, D. https://doi.org/10.1016/j.rse.2004.10.011>
20. 2004: Relationships between forests stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management, 198: 149–167.
< , D., Mausel, P., Brondizio, E., Moran, E. https://doi.org/10.1016/j.foreco.2004.03.048>
21. 2013: Monitoring coniferous forest biomass changes using a Landsat trajectory-based approach. Remote Sensing of Environment, 139: 277–290.
< , M., Cohen, W.B., Kennedy, R. E., Grodski, W., Pflugmacher, D., Griffiths, P., Hostert, P. https://doi.org/10.1016/j.rse.2013.08.010>
22. 2011: Evaluating the Remote Sensing and Inventory-based estimation of biomass. Remote Sensing, 3: 1427–1446.
< , M., Moisen, G.G., Healey, S.P., Keeton, W.S., Freeman, E.A., Hostert, P. https://doi.org/10.3390/rs3071427>
23. 1998: Determining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment, 65 (3): 249–254.
< , M.E., Newman, S.D., Aber, J.D., Congalton, R. G. https://doi.org/10.1016/S0034-4257(98)00035-2>
24. Michalko, J. 1986. Geobotanicka mapa CSSR. Veda, Bratislava:186 pp.
25. 1997: Determination of mean tree height of forest stands using airborne laser scanner data. IJRS J.Photogram, 52: 49–56.
< , E. https://doi.org/10.1016/S0924-2716(97)83000-6>
26. 2011: Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area. Remote Sensing of Environment, 115: 3599–3614.
< , E., Gobakken, T., Solberg, S., Gregoire, T.G., Nelson, R., Stahl, G. https://doi.org/10.1016/j.rse.2011.08.021>
27. Penner, M., Power, K., Muhairwe, C., Tellier, R., Wang, Y. 1997: Canada’s forest biomass resources, deriving estimates from Canada’s Forestry Centre. Victoria, BC, Info. Re BC-X-370.
28. 2004: Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. Forest Science, 50: 551–565.
, S.C., Wynne, R.H., Scrivani, J.A.
29. Richards, J. A. 1999: Remote Sensing Digital Image Analysis. Springer-Verlag, Berlin, p. 240.
30. 1986: A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, 52: 223–227.
, G., Fitzpatrick-Lins, K.
31. Running, S.W., Thornton, P.E., Nemani, R., Glassy, J.M. 2000: Global terrestrial gross and primary productivity from the earth observing system. In O.E. Sala, R. Jackson, H.A. Mooney, & R. Hwarth (Eds.), Methods in ecosystem science, pp. 44–57. New York: Springer-Verlag.
32. Schlerf, M. 2006: Determination of structural and chemical forest attributes using hyperspectral remote sensing data – case studies in Norway spruce forests. Dissertation at University of Trier, Geography/Geosciences, Germany, 203 pp.
33. 2004: Accuracy assessment of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 90: 23–43.
< , P.S., Encola, E.A., Ashton, M.S., Van Der Meer, B. https://doi.org/10.1016/j.rse.2003.11.018>
34. 2012: Using multifrequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest. ISPRS Journal of Photogrammetry and Remote Sensing, 69: 121–133.
< , O.W., Coops, N.C., Wulder, M.A., Marshall, P.L., Mccardle, A. https://doi.org/10.1016/j.isprsjprs.2012.02.009>
35. 1993: Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14: 1563–1575.
< , J.E. Rock, B.N., Moss, D.M. https://doi.org/10.1080/01431169308953986>
36. 2004: Generic biomass functions for Norway spruce in Central Europe – a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24: 121–139.
< , C., Schumacher, J., Schulze, E. - D. https://doi.org/10.1093/treephys/24.2.121>
37. 2003: Forest inventory height update through the integration of lidar data with segmented Landsat imagery. Can.J.Remote Sensing, 29 (5): 536–543.
< , M.A., Seemann, D. https://doi.org/10.5589/m03-032>
38. 2008: Generic biomass functions for Common beech (Fagus sylvatica L.) in Central Europe – predictions and components of uncertainty. Canadian Journal of Forest Research, 38 (6): 1661–1675.
< , T., Wirth, C., Schumacher, J. https://doi.org/10.1139/X07-194>
39. Zhang, H., Hu, H., Yao, X., Zheng, K. F. 2009: Estimation of aboveground biomass using HJ-1 hyperspectral images in Hangzhou Bay, China. International Conference on Information Engineering and Computer Science, ICIECS 2009.
40. 2004: Estimating aboveground biomass using Landsat 7 ETM + data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93: 402–411.
< , D.L., Rademacher, J., Chen, J.Q., Crow, T., Bresee, M., Le Moine, J. et. al. https://doi.org/10.1016/j.rse.2004.08.008>
41. 2013: A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128: 289–298.
< , S.G., Goetz, S.J., Dubayan, R. https://doi.org/10.1016/j.rse.2012.10.017>