Beskydy 2015, 8, 35-46

https://doi.org/10.11118/beskyd201508010035

Aboveground biomass estimation with airborne hyperspectral and LiDAR data in Tesinske Beskydy Mountains

Olga Brovkina1, František Zemek2, Tomáš Fabiánek2

1Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 61300, Czech Republic
2Remote Sensing Department, Global Change Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Brno, Belidla 986/4a, 60300, Czech Republic

References

1. Anderson, J., Plourde, L.C., Martin, M.E., Braswell, B.H., Smith, M.I., Dubayah, R.O., et al. 2008: Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest. Remote Sensing of Environment, 112 (4): 1856–1870. <https://doi.org/10.1016/j.rse.2007.09.009>
2. Ardo, J. 1992: Volume quantification of coniferous forest compartments using spectral radiance recorded by Landsat Thematic Mapper. International Journal of Remote Sensing, 13(9): 1779–1786. <https://doi.org/10.1080/01431169208904227>
3. Buddenbaum, H., Schlerf M., Hill J. 2005: Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods. International Journal of Remote Sensing, 26 (24): 5453–5465. <https://doi.org/10.1080/01431160500285076>
4. Chopping, M., Schaaf, C.B., Zhao, F., Wang, Z., Nolin, A.W., Moisen G.G. et al. 2011: Forest structure and aboveground biomass in the south-western United States from MODIS and MISR. Remote Sensing of Environment, 115: 2943–2953. <https://doi.org/10.1016/j.rse.2010.08.031>
5. Dudeni, N., Debba, P., Cho, M., Mathieu, R. 2009: Spectral band discrimination for species observed from hyperspectral remote sensing. Proceedings Workshop IEEE on Hyperspectral Image and Signal Processing WHISPERS, 26–28 August, Grenoble, France.
6. Fassnacht, F.E., Hartig, F., Latifi, H., Berger, C., Hernandez, J., Corvalan, P., Koch, B. 2014: Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154: 102–114. <https://doi.org/10.1016/j.rse.2014.07.028>
7. Goetz, S.J., Prince, S.D., Small, J., Gleason, A.C.R. 2000: Interannual variability of global terrestrial primary production: Results of a model driven with satellite observations. Journal of Geographic Research, 105: 20077–20091.
8. Grodzki, W. 2006: Threats to the mountain Norway spruce stands in the Carpathians from the insect pests. Current Problems of Forest Protection in Spruce Stands under Conversion; Grodzki, W., Oszako, T., Eds.; IBL, Forest Research Institute (FRI): Warsaw, Poland, pp. 71–78.
9. Heinzel, J., Koch. B. 2011: Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 152160.
10. Huber, S., Kneubuhler, M., Psomas, A., Itten, K., Zimmermann, N.E. 2008: Estimating foliar biochemistry from hyperspectral data in mixed forest canopy. Forest Ecology and Management, 256 (3): 491–501. <https://doi.org/10.1016/j.foreco.2008.05.011>
11. Kankare, V., Vastaranta, M., Holopainen, M., Raty, M., Yu, X., Hyyppa, J., Hyyppa, H., Alho, P., Viitala, R. 2013: Retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sensing, 5: 2257–2274; doi:10.3390/rs5052257 <https://doi.org/10.3390/rs5052257>
12. Kellndorfer, J.M., Walker, W.S., Lspoint, E., Kirsch, K., Bishop, J., Fiske, G. 2010: Statistical fusion of LiDAR, InSAR and optical remote sensing data for forest stand height characterization: A regional-scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets. J. Geophys. Res. 115, doi: 10.1029/2009JG000997 <https://doi.org/10.1029/2009JG000997>
13. Koch, B. 2010: Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 65: 581–590. <https://doi.org/10.1016/j.isprsjprs.2010.09.001>
14. Kozak, J. 1996: Przestrzenny model degradacji lasów Beskidu Śląskiego. Biuletyn KPZK, 174: 511–538.
15. Labrecque, S., Fournier, R. A., Luther, J.E., Piercey, D. 2006: A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. Forest Ecology and Management, 226: 129–144. <https://doi.org/10.1016/j.foreco.2006.01.030>
16. Latifi, H., Nothdurft, A., Koch, B. 2010: Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry, 83: 395–407. <https://doi.org/10.1093/forestry/cpq022>
17. Latifi, H., Fanssnacht, F., Koch, B. 2012: Forest structure modelling with combined airborne hyperspectral and LiDAR data. Remote Sensing of Environment, 121: 10–25. <https://doi.org/10.1016/j.rse.2012.01.015>
18. Laurin, G.V., Chen, QI, Lindsell, J.A., Coomes, D.A., Del Frate, F., Guerriero, L., Pirotti, F., Valentini, R. 2014: Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 89: 49–58. <https://doi.org/10.1016/j.isprsjprs.2014.01.001>
19. Leckie, D.G., Gougeon, F.A., Tinis, S., Nelson, T., Burnett, C.N., Paradine, D. 2005: Automated tree recofnition in old growth conifer stands with high resolution digital imagery. Remote Sensing of Environment, 94: 311–326. <https://doi.org/10.1016/j.rse.2004.10.011>
20. Lu, D., Mausel, P., Brondizio, E., Moran, E. 2004: Relationships between forests stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management, 198: 149–167. <https://doi.org/10.1016/j.foreco.2004.03.048>
21. Main-Knorn, M., Cohen, W.B., Kennedy, R. E., Grodski, W., Pflugmacher, D., Griffiths, P., Hostert, P. 2013: Monitoring coniferous forest biomass changes using a Landsat trajectory-based approach. Remote Sensing of Environment, 139: 277–290. <https://doi.org/10.1016/j.rse.2013.08.010>
22. Main-Knorn, M., Moisen, G.G., Healey, S.P., Keeton, W.S., Freeman, E.A., Hostert, P. 2011: Evaluating the Remote Sensing and Inventory-based estimation of biomass. Remote Sensing, 3: 1427–1446. <https://doi.org/10.3390/rs3071427>
23. Martin, M.E., Newman, S.D., Aber, J.D., Congalton, R. G. 1998: Determining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment, 65 (3): 249–254. <https://doi.org/10.1016/S0034-4257(98)00035-2>
24. Michalko, J. 1986. Geobotanicka mapa CSSR. Veda, Bratislava:186 pp.
25. Nasset, E. 1997: Determination of mean tree height of forest stands using airborne laser scanner data. IJRS J.Photogram, 52: 49–56. <https://doi.org/10.1016/S0924-2716(97)83000-6>
26. Nasset, E., Gobakken, T., Solberg, S., Gregoire, T.G., Nelson, R., Stahl, G. 2011: Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area. Remote Sensing of Environment, 115: 3599–3614. <https://doi.org/10.1016/j.rse.2011.08.021>
27. Penner, M., Power, K., Muhairwe, C., Tellier, R., Wang, Y. 1997: Canada’s forest biomass resources, deriving estimates from Canada’s Forestry Centre. Victoria, BC, Info. Re BC-X-370.
28. Popescu, S.C., Wynne, R.H., Scrivani, J.A. 2004: Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. Forest Science, 50: 551–565.
29. Richards, J. A. 1999: Remote Sensing Digital Image Analysis. Springer-Verlag, Berlin, p. 240.
30. Rosenfield, G., Fitzpatrick-Lins, K. 1986: A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, 52: 223–227.
31. Running, S.W., Thornton, P.E., Nemani, R., Glassy, J.M. 2000: Global terrestrial gross and primary productivity from the earth observing system. In O.E. Sala, R. Jackson, H.A. Mooney, & R. Hwarth (Eds.), Methods in ecosystem science, pp. 44–57. New York: Springer-Verlag.
32. Schlerf, M. 2006: Determination of structural and chemical forest attributes using hyperspectral remote sensing data – case studies in Norway spruce forests. Dissertation at University of Trier, Geography/Geosciences, Germany, 203 pp.
33. Thenkabail, P.S., Encola, E.A., Ashton, M.S., Van Der Meer, B. 2004: Accuracy assessment of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 90: 23–43. <https://doi.org/10.1016/j.rse.2003.11.018>
34. Tsui, O.W., Coops, N.C., Wulder, M.A., Marshall, P.L., Mccardle, A. 2012: Using multifrequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest. ISPRS Journal of Photogrammetry and Remote Sensing, 69: 121–133. <https://doi.org/10.1016/j.isprsjprs.2012.02.009>
35. Vogelmann, J.E. Rock, B.N., Moss, D.M. 1993: Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14: 1563–1575. <https://doi.org/10.1080/01431169308953986>
36. Wirth, C., Schumacher, J., Schulze, E. - D. 2004: Generic biomass functions for Norway spruce in Central Europe – a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24: 121–139. <https://doi.org/10.1093/treephys/24.2.121>
37. Wulder, M.A., Seemann, D. 2003: Forest inventory height update through the integration of lidar data with segmented Landsat imagery. Can.J.Remote Sensing, 29 (5): 536–543. <https://doi.org/10.5589/m03-032>
38. Wutzler, T., Wirth, C., Schumacher, J. 2008: Generic biomass functions for Common beech (Fagus sylvatica L.) in Central Europe – predictions and components of uncertainty. Canadian Journal of Forest Research, 38 (6): 1661–1675. <https://doi.org/10.1139/X07-194>
39. Zhang, H., Hu, H., Yao, X., Zheng, K. F. 2009: Estimation of aboveground biomass using HJ-1 hyperspectral images in Hangzhou Bay, China. International Conference on Information Engineering and Computer Science, ICIECS 2009.
40. Zheng, D.L., Rademacher, J., Chen, J.Q., Crow, T., Bresee, M., Le Moine, J. et. al. 2004: Estimating aboveground biomass using Landsat 7 ETM + data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93: 402–411. <https://doi.org/10.1016/j.rse.2004.08.008>
41. Zolkos, S.G., Goetz, S.J., Dubayan, R. 2013: A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128: 289–298. <https://doi.org/10.1016/j.rse.2012.10.017>
front cover

Current issue

ISSN 1803-2451 (Print)

ISSN 1805-9538 (Online)

Archive