Beskydy 2015, 8, 47-53

https://doi.org/10.11118/beskyd201508010047

Influence of different tree densities on CO2 flux from soil in Norway spruce monoculture

Tomáš Fabiánek1,2, Ladislav Menšík1, Jiří Kulhavý1

1Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
2Global Change Research Centre AS CR, v.v.i. Bělidla 986/4a, Brno 603 00, Czech Republic

References

1. Berg, B., Essen, B., Ekbohm, G. 1982: Nitrogen level and lignin decomposition in Scote pine needle liter. Oikos, 38: 291–296. <https://doi.org/10.2307/3544667>
2. Davidson, E.A., Richardson, A.D., Savage, K.E., Hollinger, D.Y. 2006: A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Global Change Biology, 12: 230–239. <https://doi.org/10.1111/j.1365-2486.2005.01062.x>
3. Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., Wisniewski, J. 1994: Carbon pools and flux of global forest ecosystems. Science, 263: 185–190. <https://doi.org/10.1126/science.263.5144.185>
4. Fahnestock, J.T., Jones, M.H., Brooks, P.D., Walker, D.A., Welker, J.M. 1998: Winter and early spring CO2 efflux from tundra communities of northern Alaska. Journal of Geophysical Research, 103: 29023–29027. <https://doi.org/10.1029/98JD00805>
5. Gabriel, C.E., Kellman, L. 2014: Investigating the role of moisture as an environmental constraint in the decomposition of shallow and deep mineral soil organic matter of a temperate coniferous soil. Soil Biology and Biochemistry, 68: 373–384. <https://doi.org/10.1016/j.soilbio.2013.10.009>
6. Gower, S.T., Pongracic, S., Landsberg, J.J. 1996: A global trend in below-ground carbon allocation: Can we use thee relationship at smaller scales? Ecology, 77: 1750–1755. <https://doi.org/10.2307/2265780>
7. Green, R.N., Trownbridge, R.L., Klinka, K. 1993: Towards a taxonomic classification of humus forms. Forest Science Monographs, 29: 1–49.
8. Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A. 2000: Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48: 115–146. <https://doi.org/10.1023/A:1006244819642>
9. IPCC. 2007: Coupling between changes in the climate system and biogeochemistry. Available from: www.ippc-wgl.ucar.edu/wg1/Report/AR4WG1_Pub_Ch07-v2.pdf.
10. ISSS Working Group WRB. 2014: World Reference Base for Soil Resources 2014. World Soil Resources Reports, 106. FAO, Rome: 191 p.
11. Klimo, E., Kulhavý, J. 2002: Ecological consequences of clearcutting in spruce monocultures. Ekologia Bratislava, 21 (spp.1): 14–30.
12. Knott, R. 2002: Development of a young stand of Norway spruce (Picea abies /L./ Karst.) of the second generation on an allochthonous site. Ekologia Bratislava, 21 (1): 5–13.
13. Krejza, J., Pokorný, R., Marková, I. 2013: Is allometry for aboveground organ’s mass estimation in young Norway spruce stands affected by different type of thinning? Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LXI (6): 1755–1761. <https://doi.org/10.11118/actaun201361061755>
14. Lee, M., Nakane, K., Takayuki, N.T., Koizumi, H. 2005: The importance of root microbial biomass in cottonwood a loblolly pine plantation along a nitrogen fertilization gradient. Forest Ecology and Management, 185: 263–273. <https://doi.org/10.1016/S0378-1127(03)00164-6>
15. Linder, S. 1985: Potential and actual production in Australia forest stands. In. Landsberg, J. J., Pardon, W. (eds). Research for Forest Management, CSIRO Division of Forest Research, Canberra. p. 11–35.
16. Luo, Y., Zhou, X. 2006: Soil respiration and the environment. Academic Press/Elsevier, San Diego, CA, USA 316 p.
17. Ma, S., Chen, J., North, M., Erickson, H.E., Bresee, M., Moine, J.L. 2004: Short-term effects of experimental burning and thinning on soil respiration in an old-growth, mixed-conifer forest. Environmental Management, 33: S148–S159. <https://doi.org/10.1007/s00267-003-9125-2>
18. Marland, G., McCarl, B.A., Schneider, U. 2001: Soil carbon: Policy and economics. Climatic Change, 51: 101–117. <https://doi.org/10.1023/A:1017575018866>
19. Meloun, M., Militký J. 2011: Statistical Data Analysis, A Practical Guide with 1250 Exercises and Answer key on CD. Woodhead Publishing India, 1600 p.
20. Menšík, L., Fabiánek, T., Tesař, V., Kulhavý, J. 2009: Humus conditions and stand characteristics of artificially established young stands in the process of the transformation of spruce monocultures. Journal of Forest Science, 55: 215–223. <https://doi.org/10.17221/18/2009-JFS>
21. Ohashi, M., Gyokusen, K., Saito, A. 1999: Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D. Don) forest floor using an open-flow chamber method. Forest Ecology and Management, 123: 105–114. <https://doi.org/10.1016/S0378-1127(99)00020-1>
22. Olajuyigbe, S., Tobin, B., Saunders, M., Nieuwenhuis, M. 2012: Forest thinning and soil respiration in a Sitka spruce forest in Ireland. Agricultural and Forest Meteorology, 157: 86–95. <https://doi.org/10.1016/j.agrformet.2012.01.016>
23. Olson, J.S., Watts, J.A., Allison, L.J. 1983: Carbon in live vegetation of major world ecosystems. Oak Ridge National Laboratory, ORNL-5862, Oak Ridge TN.
24. Pang, X., Bao, W., Zhu, B., Cheng, W. 2013: Responses of soil respiration and its temperature sensitivity to thinning in a pine plantation, Agricultural and Forest Meteorology, 171–172: 57–64. <https://doi.org/10.1016/j.agrformet.2012.12.001>
25. Pavelka, M., Acosta, M., Marek, M.V., Kutsch, W., Janouš, D. 2007: Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant and Soil, 292 (1-2): 171–179. <https://doi.org/10.1007/s11104-007-9213-9>
26. Pebesma, E.J. 2004: Multivariable geostatistics in S: the gstat package. Computers and Geosciences, 30(7): 683–691. <https://doi.org/10.1016/j.cageo.2004.03.012>
27. Peng, Y., Thomas, S.C., Tian, D. 2008: Forest management and soil respiration: Implication for carbon sequestration. Enviromental Review, 16: 93–111.
28. Raich, J.W., Schlesinger, W.H. 1992: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, series B, Chemimal and Physical Meterology, 44: 81–99. <https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x>
29. Rodeghiero, M., Cescatti, A. 2008: Spatial variability and optimal sampling strategy of soil respiration. Forest Ecology and Management, 255, 106–112. <https://doi.org/10.1016/j.foreco.2007.08.025>
30. Tang, J., Qi, Y., Xu, M., Misson, L., Goldstein, A. H. 2005: Forest thinning and soil respiration in a ponderosa pine plantation in Sierra Nevada. Tree Physiology, 25: 57–66. <https://doi.org/10.1093/treephys/25.1.57>
31. Valentini, R., Matteucci, G., Dolman, A.J., Schulze, E.-D., Rebmann, C., Moors E.J., Granier, A., Gross, P., Jensen, N.O., Pilegaard, K., Lindroth, A., Grelle, A., Bernhofer, C., Grunwald, T., Aubinet. M., Ceulemans. R., Kowalski. A.S., Vesala, T., Rannik, U., Berbigier, P., Loustau, D., Gu[eth]mundsson, J., Thorgeirsson, H., Ibrom, A., Morgenstern, K., Clement, R., Moncrieff, J., Montagnani, L., Minerbi, S., Jarvis, P.G. 2000: Respiration as the main determinant of carbon balance in European forests. Nature, 404: 861–865. <https://doi.org/10.1038/35009084>
32. Vesterdal, L., Elberling, B., Christiansen, J.R., Callesen, I., Schmidt, I.K. 2012: Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management, 264: 185–196. <https://doi.org/10.1016/j.foreco.2011.10.009>
front cover

Current issue

ISSN 1803-2451 (Print)

ISSN 1805-9538 (Online)

Archive